

page 1

CSC 220 Object Oriented Multimedia Programming, Fall 2020
Dr. Dale E. Parson, Assignment 1, 2D automated avatars in 2D spaces in Processing.
This assignment is due via D2L Assignments Assignment 1 CSC220F20AvatarClassInAvatarRoom
by 11:59 PM on 24 September.

I recommend using your home machine as the Preferences -> Sketchbook location, or a USB thumb drive
if you are moving from machine to machine. (FROM PRE-COVID SEMESTERS ONLY: When using
Processing on the Kutztown campus Windows computers, make sure to start out every time by setting
your Processing Preferences -> Sketchbook Location to U:\Processing. The U:\ drive is a networked drive
that will save your work and make it accessible across campus. If you save it to your desktop or the lab
PC you are using, you will lose your work when you log out. You must save it to the U:\ drive. If you do
not have a folder1 called Processing under U:\, you must create one using the Windows Explorer.
Processing Preferences is under the File menu on Windows.) Alternatively, you can use a USB thumb
drive with a folder for your sketchpad location, and use that on Windows, Mac, or Linux. Windows
computer labs on the KU campus such as Rohrbach Library should allow you to run Processing from the
networked S:\ComputerScience\processing subdirectory.

If you will be downloading Processing 3.X2 and running it using an off-campus computer (do not use
version 2.X for semester), you can copy your project sketch named
CSC220F20AvatarClassInAvatarRoom to a flash drive on one machine, and then copy it from the flash
drive to another Processing sketch folder.

You can copy and paste the text for my handout sketch into a new sketch, then save it, as a starting point.
Create your CSC220F20AvatarClassInAvatarRoom folder by running File -> Save As ->

1 Another name for a folder is a directory.
2 https://processing.org/download/

page 2

CSC220F20AvatarClassInAvatarRoom after setting up your sketch folder.

The handout code is here:
https://faculty.kutztown.edu/parson/fall2020/CSC220F20AvatarClassInAvatarRoom.txt (handout code)
HOWEVER, to earn 100% you must complete all redesigns specified below. It must not be a small
change to mine; it must be your own visual design. Nevertheless, starting with mine is necessary because
substantial parts of the assignment remain intact, including the interface Avatar, the abstract class
CollisionDetector (formerly AvatarHelper), the setup() function, draw(), overlap(), and the keyPressed()
function. The entire assignment including the Unified Modeling Language (UML) class diagram is here:
http://faculty.kutztown.edu/parson/fall2020/CSC220Fall2020Assn1.html (assignment web page)

NOTE: If you have only 1 display monitor and want to have the Processing editor and the graphical
window available at the same time, do this:

Up in setup(), change this:

void setup() {
 // setup() runs once when the sketch starts, initializes sketch state.
 // size(1000, 800, P2D);
 fullScreen(P2D);

to this

void setup() {
 // setup() runs once when the sketch starts, initializes sketch state.
 size(1000, 800, P2D);
 // fullScreen(P2D);

and adjust the pixels in size() to work for your setup. Feel free to turn it in that way.

REQUIREMENTS:

1. Write another direct subclass of abstract class CollisionDetector (formerly AvatarHelper) that

implements your custom avatar. You can use Processing shape-drawing primitives
arc/ellipse/line/point/quad/rect/triangle3, or a .svg vector graphics file, or include at most one .jpg or
.png image file in your class. You must use at least one Processing shape-drawing primitive. Your
avatar class must be mobile and support creation of multiple objects. You may copy/paste/rename my
Professor class as your starting point, and you may keep and construct a small number of mobile
Professor(s), or you may delete class Professor if you do not want to keep it. Name your Avatar-
derived class whatever you want. Tell me its name in a comment at the top of the file.

2. Your class’ display() method must use push() and translate() as the first two instructions. Make sure
to have a well-defined 0,0 reference point within the body of your class objects. Denote the well-
defined 0,0 reference point with a comment in the code. Also, pop() must be the final instruction in
your display function.

3. Your move() method must change one or more of scaleX, scaleY, shearX, or shearY4; you may

3 https://processing.org/reference/

4 Note 9/12/2019: rotateBB will not work correctly in some cases of shearX or shearY. It must work in the absence of shearX or
shearY (I’ll turn them off while testing your sketch), but you are free to use them if you want.

page 3

have to add class data fields for this requirement. You must perform rotation. You may change color
or other custom properties of your avatar. Make sure to call detectCollisions() as the final step of
move().

4. Redefine method getBoundingBox() in your class to accurately depict the bounding box for your
object. Use my rotateBB(…) helper function to compensate for rotation; one of my supplied Avatar-
derived classes provides an example. Test this using the ‘b’ key command to show the bounding box.
The box must closely encompass your avatar.
NOTE: You can copy functions rotatePoint() and rotateBB() from this example code that we went
over 9/8:
https://faculty.kutztown.edu/parson/fall2019/CSC220F19DemoG_ClassInterfaceInheritance.txt
You do not need to understand how I implemented them, but you do need to use them. Look at
function getBoundingBox() inside class Avatar2 in that example sketch. It simplifies to this:

 }
 int [] getBoundingBox() {
 int [] result = new int[4];
 result = rotateBB(-ewidth/2, -eheight/2, ewidth/2, eheight/2,
 rotateFactorDegrees, XscaleFactor, YscaleFactor, elx, ely);
 return result ;
 }

where you must replace the first 4 arguments with your LEFT, TOP, RIGHT, BOTTOM extents
(bounds) of the shape drawn in your display() function, relative to your 0,0 point at elx, ely. Get the
graphics for your Avatar correct, then work on its bounding box.

5. Construct some number of your avatars and store them in the avatars[] array within setup(). Make
sure your constructor initializes any data fields you add, and use super(…) to call its base class
constructor.

6. Change the immobile Furniture class’ methods to create obstacles (they work more like membranes)
that use Processing’s arc or ellipse or quad or triangle shapes instead of (or in addition to) my
Furniture’s use of rect. Make sure that getBoundingBox() is correct for your class. Place some of your
immobile Furniture objects in your scene.

7. Create a mobile peer class to Paddle that moves in a periodic manner using Processing shape(s).
Make sure that getBoundingBox() is correct for your class. Place some of your mobile class objects in
your sketch. Modifying class Paddle to meet this requirement is OK.

8. Update your sketch documentation comments at the top to include your name and any other
appropriate changes. Identify the classes you have added or changed in comments at the top; put the
add/change detail comments within the classes themselves. Add documentation comments to your
new classes. Make especially sure to document the body parts for your avatar similar to comments in
Professor.display(). Make sure to document your avatar’s internal 0,0 reference point within
display().

9. Test thoroughly. Each substantial bug results in a 10% deduction. Get with me during lab time or
office hours if you get stuck.

10. Do not change any code other than that specified here without checking with me first. Interface
Avatar and the abstract class CollisionDetector (formerly AvatarHelper) MUST remain unchanged.
Function setup() requires some new constructor calls for your classes and space in the avatars[] array.
You will need a new global variable or two if you load a .svg, .jpg, or .png file (no extra credit and no
requirement for using such files); load them within setup(), not within your class, in order to avoid
duplicate files in memory. Functions draw(), keyPressed(), and overlap() should work correctly in the
handout; do not change them without checking with me. The reason for these restrictions is that
assignment 2 may use teams of 2 or 3 students to create a 3D counterpart to this sketch, and if you
change the non-class framework too much, your sketch will be incompatible with others.

We will have a class period for working on this project. If you do not get it done in class, you will have to

page 4

complete it as homework. I expect it to be to me by the due date via D2L. I will deduct 10% for
each day it is late. Also, re-read the above requirements when you turn it in, to ensure that you don’t
miss anything. If you make changes after turning it in, just turn in another copy of your sketch via D2L. I
will look at the last one that you turn in.

TURNING IT IN: When your work is completed, and you have re-read and satisfied the project
requirements, you can use the Windows Explorer to find the file
CSC220F20AvatarClassInAvatarRoom.pde in your
U:\Processing\CSC220F20AvatarClassInAvatarRoom folder. Drag
CSC220F20AvatarClassInAvatarRoom.pde into the Assignment 1 dropbox under our course’s D2L
account by the due date. If you find you have created an error, you can drop an updated
CSC220F20AvatarClassInAvatarRoom.pde into the dropbox. Assignment 1 is under Assessments ->
Assignments in our D2L account. If you are working on a laptop or your machine at home, turn it in via
D2L in the same way. Finally, if your sketch loads any image or .svg vector graphics files, turn in a .zip
archive of the entire CSC220F20AvatarClassInAvatarRoom/ directory instead of the individual files. The
assignment web page shows how to zip of a Processing sketch. I cannot run a sketch that depends on
additional files without receiving those files.

