

page 1

CSC 220 Object Oriented Multimedia Programming, Fall 2019
Dr. Dale E. Parson, Assignment 4, planetarium music server controlled by student Android client.
This assignment is due via D2L Assignment 4 Android client by 11:59 PM on 26 November.

Important dates and notes on bonus points:
A. After going over this code on November 12, all sessions in November will be work sessions.
B. November 19’s work session will be in the KU Planetarium. Attendance is mandatory (10%)

unless you have a documented excuse from a physician’s office or the health or counseling center.
C. Anyone who has Assignment 4 working on an Android device and can demo that to me by the end of

the November 21 class earns 10% bonus points (a) on this project. You must turn in your code by
end of November 21, in addition to demoing to me. You can work in an optional team of 2, or solo.
Make sure to put your name or the names of team members in the comments at the top of your sketch.
The first 10 students or teams (5 per course section) who have Assignment 4 working on an Android
device by November 21 and agree to be performers at the December 2 event earn an additional 10%
(b), but they must attend a practice session in the planetarium on Sunday December 1, and I will not
accept students to perform who were late with Assignment 3.

D. We will not have class on Tuesday November 26. I will be traveling. I will post a Zoom video and
announce its URL ahead of time. Thanksgiving break is on November 27-29.

E. Monday December 2 is our event in the planetarium with the Princeton Laptop Orchestra. If you
arrive by 6:40 PM and stay for the whole event, you will earn 10% bonus points on this
assignment after signing in at the end. If you cannot make Monday evening, you can help with
setup on Sunday December 1 to earn the 10%. We can set a time to meet.

F. Tuesday December 3 we will meet in the planetarium for any last-minute work. December 5 we will
review for a final exam.

G. The final exam for the 12:00 class is on Tuesday, Dec. 10, 2019, 8:00 a.m. – 10:00 a.m. The final
exam for the 1:30 class is on Thursday, Dec. 12, 2019, 11:00 a.m. – 1:00 p.m. They will be in Old
Main159. You must contact me with a documented medical excuse to miss the exam, or you will earn
0% on it.

H. The advertised 10% per day late penalty applies to this project 4.

When using Processing on the Kutztown campus Windows computers, make sure to start out every time
by setting your Processing Preferences -> Sketchbook Location to U:\Processing. The U:\ drive is a
networked drive that will save your work and make it accessible across campus. If you save it to your
desktop or the lab PC you are using, you will lose your work when you log out. You must save it to the
U:\ drive. If you do not have a folder called Processing under U:\, you must create one using the Windows
Explorer. Processing Preferences is under the File menu on Windows.

page 2

If you will be downloading Processing 3.X and running it using an off-campus computer (do not use
version 12.X for assignments), you can copy your project sketch to a flash drive on one machine, and then
copy it from the flash drive to another Processing sketch folder.

Steps for getting 3D sketch CSC220F19MIDIassn3parson (Dr. Parson’s MIDI keyboard solution to
CSC220 Fall 2019 Assignment 3) to work as 2D sketch CSC220F19Androidassn4Client (OSC/UDP
message interface on the Android) to play Dr. Parson’s CSC220F19MIDIassn4Server on a laptop via
wireless LAN.2

Pitfall: You will create sketch CSC220F19Androidassn4Client from handout sketch
CSC220F19MIDIassn3parson, with editor tabs for Musician, Note, CartesianPolar, and Menus. You
will also copy and save sketch CSC220F19MIDIassn4Server with its own, distinct Musician, Note, and
CartesianPolar tabs. Be careful to copy & paste the correct tabs from my handouts on the course page.

1. Copy Dr. Parson’s CSC220F19MIDIassn3parson sketch into a new Processing editor and Save As
CSC220F19Androidassn4Client. Save it after each step.

2. One at a time, copy the Musician, Note, CartesianPolar, and Menus tabs from
CSC220F19MIDIassn3parson and paste them as new tabs into CSC220F19Androidassn4Client
tabs, similar to the start of Assignment 3. I have made changes since Assignment 3, so make sure to
copy them from the Assignment 4 CSC220F19MIDIassn3parson section on the course page.

3. (11.25%) In CSC220F19Androidassn4Client setup(), change all occurrences of P3D to P2D for the
2D renderer. If you are testing on a PC or laptop that is also running the
CSC220F19MIDIassn4Server sketch, use the Processing size() function rather than fullScreen() in
setup(). When you start testing on separate devices, switch to fullScreen() in
CSC220F19Androidassn4Client setup().

4. (11.25%) Try to run it on a PC or laptop, and correct any problems from trying to use 3D graphics.
You will see error messages for the unsupported 3D operations. Any calls to the library translate()
function that supply a Z, third argument must remove the third argument. Keep the translate call, but
remove the third argument, unless the X and Y arguments are 0; when X and Y are 0, just remove that
translate() call. Remove the 3D shape in Note.display(), along with anything else requiring a non-0 Z
coordinate; remove any third argument to scale() if there is one. Also, if there is a rotateX() or
rotateY() call, remove it, and change rotateZ() to rotate() if there is one.

5. (11.25%) Save and run it in Java mode. It should still run & emit MIDI notes at this point, but there
will be no 3D graphics. We are cutting out 3D to avoid clutter and CPU consumption on the Android.
Testing on Android comes later.

6. Copy Parson’s CSC220F19MIDIassn4Server sketch into a new Processing editor and Save As
CSC220F19MIDIassn4Server (same name).

																																																													
1	If	you	receive	an	error	message	The	package	oscP5	or	netP5	does	not	exist	when	attempting	to	run	with	OSC	for	
the	first	time,	go	to	Sketch	->	Import	library	->	Add	library	on	the	editor’s	menu,	Filter	on	oscP5,	click	and	Install	
this	networking	library	on	your	PC	or	laptop.	Also,	the	first	time	you	try	to	change	from	Java	mode	to	Android	
mode	(step	13	below)	at	the	upper	right	corner	of	the	editor,	you	will	have	to	walk	through	Add	mode	->	Android	
mode	->	Install.	After	Install	completes,	switching	to	Android	mode	the	first	time	walks	you	through	Download	
(android)	SDK	automatically	and	its	installation.	This	SDK	is	the	underlying	Google	library	for	programming	in	Java	
on	Android.	
2	A	few	students	running	Macs	with	a	recent	version	of	OSX	found	that	3D	Assignment	3	handout	code	would	crash	
on	the	Mac.	My	older	OSX	works	OK.	One	student	enabled	debugging	via	Debug	->	Enable	Debugger	from	the	
Processing	editor.	If	you	get	cryptic	crashes	on	handout	code	that	should	work,	try	enabling	the	debugger	this	way.	

page 3

7. One at a time, copy the Musician, Note, and CartesianPolar tabs from
CSC220F19MIDIassn4Server and paste them as new tabs into tabs, similar to steps 1 and 2 above.
Save CSC220F19MIDIassn4Server. You will make NO further changes to
CSC220F19MIDIassn4Server, but you must use it for later testing. I have made changes since
Assignment 3, so make sure to copy them from the Assignment 4 CSC220F19MIDIassn4Server
section on the course page

8. (11.25%) Back to CSC220F19Androidassn4Client: Insert these statements startOSC();
orientation(LANDSCAPE);	 as the very last statements in function setup() in the main Tab, before
setup()’s closing curly brace. Save and test. It should work as before, and now you should see print
statements like this at the bottom of your Integrated Development Environment (IDE – the editor)
window, with your device’s IP address:

One client IPADDR: 10.0.1.17 (Your IP address will likely be different. USE 127.0.0.1 when both on same PC.)
SETTING MYIPADDR to 10.0.1.17
SETTING MYIPADDR to 10.0.1.17
One client IPADDR: 127.0.0.1
OscP5 0.9.9 infos, comments, questions at http://www.sojamo.de/oscP5
[2019/11/8 15:46:27] PROCESS @ OscP5 stopped.
[2019/11/8 15:46:27] PROCESS @ UdpClient.openSocket udp socket initialized.
[2019/11/8 15:46:28] PROCESS @ UdpServer.start() new Unicast DatagramSocket created @ port
12000
[2019/11/8 15:46:28] PROCESS @ UdpServer.run() UdpServer is running @ 12000
[2019/11/8 15:46:28] INFO @ OscP5 is running. you (10.0.1.17) are listening @ port 12000

9. (11.25%) In CSC220F19Androidassn4Client, insert this sequence of statements at the very top of

function draw() in the main Tab, after draw()’s opening curly brace. Save and test. In order to run
this test, you must first start CSC220F19MIDIassn4Server from its editor window, and then start
your CSC220F19Androidassn4Client to communicate with the server.

void draw() {
 background(0, 0, 0); // black for planetarium
 if (! connectionReady()) { // STUDENT ADD THIS SECTION TO CLIENT FOR ASSN4.
 return ;
 }

It should run, but now CSC220F19Androidassn4Client requires the user to walk through a series of text
menus. The first displays the screen resolution; click the mouse once to step through it. The second sets
the MIDI channel for the client device from 1 through 15 (I have reserved channel 0 for keyboard-based
testing on the server), and the third requires the user to connect to the IP address3 and port (usually port
12001) printed at the bottom of the server’s editor window.4 Note that when you are running 2 sketches
simultaneously, println() debug messages may appear at the bottom of the other window. This is a quirk
of Processing.

																																																													
3	When	you	are	testing	the	client	and	server	sketches	on	a	single	PC	or	laptop,	enter	IP	address	127.0.0.1	in	the	
client	menu	user	interface,	since	you	are	not	using	a	wireless	network.	127.0.0.1	is	“localhost”,	meaning	client-
server	network	messages	stay	on	that	single	computer.	
4	If	there	are	two	network	connections	on	the	server	device,	the	server	println()	may	report	the	wrong	IP	address	
for	the	wireless	network	used	by	the	client	device.	On	Windows	you	can	query	the	server	IP	address	by	running	the	
DOS	cmd	interpreter	and	typing	ipconfig.	On	Linux	and	Mac	the	command	is	ifconfig.	

page 4

Figure 1: Client prints display resolution. Click through using the mouse.

Figure 2: Set your MIDI channel and click Submit.

Figure 3: Set the server’s IP address and port number, then click Submit.

After submitting a valid server address and port, the client displays the 2D musical keyboard using
rectangles. The server’s display on the dome uses 3D. I plan to add many graphical effects on the server
for the December 2 event. The handout server is bare bones.

10. (11.25%) In CSC220F19Androidassn4Client , remove or comment out all code for connecting to
MIDI devices and sending MIDI messages. Block comments are useful. To find code depending on
MIDI libraries, I first commented out this line in the client’s main tab:

// import javax.sound.midi.* ;

Then I followed the error messages. For a large block of code that does not already use /* … */ block
comments, you can use them:

/*
// MIDI OUTPUT DEVICE SELECTION:

page 5

final int midiDeviceIndex = 0 ; // setup() checks for number of devices. Use one for output.
// NOTE: A final variable is in fact a constant that cannot be changed.
MidiDevice.Info[] midiDeviceInfo = null ;
// See javax.sound.midi.MidiSystem and javax.sound.midi.MidiDevice
MidiDevice device = null ;
// See javax.sound.midi.MidiSystem and javax.sound.midi.MidiDevice
Receiver receiver = null ;
// javax.sound.midi.Receiver receives your OUTPUT MIDI messages (counterintuitive?)
// SEE https://www.midi.org/specifications/item/gm-level-1-sound-set but start at 0, not 1
*/
Make sure to keep both of these statements at the bottom of setup():

musicians[0] = new Musician(programNumber, controlEffectNumber, controlEffectData2,
MIDIchannel);
startOSC(); orientation(LANDSCAPE);	//	added	11/12,	see	footnote	on	page	6
}

The MIDI code within classes Musician and Note must be commented out or removed, but DO NOT
CHANGE THE BLOCK STRUCTURE OF THEIR FUNCTIONS, other than commenting out or
removing “try...catch” statements (and their closing “}”) for InvalidMidiDataException. The next steps
require you to add OSC messages to the server within Note.display(), in place of the MIDI NOTE_ON
and NOTE_OFF messages.

11. (11.25%) Replace channel with oscClientMidiChan everywhere that channel appears within
function Note.display(). DO NOT CHANGE THE FUNCTION DECLARATION ITSELF:

void display(boolean isHighlighted, boolean isBeingPressed, int channel) { // keep this as channel

oscClientMidiChan is the global channel variable in Menus.pde that the user selected via the channel
selection menu. It is the channel dedicated to this client device. If you change it in the function
declaration, Note.display() just uses oscClientMidiChan as a parameter, which works like a local
variable, thereby hiding the global variable of the same name. Every other occurrence of channel
within Note.display() other than the declaration must change to oscClientMidiChan.

12. (11.25%) Where the handout code sent NOTE_ON and NOTE_OFF messages, call sendOSCMessage
instead. Here is the structure of the section of Note.display() that sent MIDI NOTE_ON and
NOTE_OFF in assignment 3. This code comes immediately after my commented-put 3D call to box()
and popMatrix(); I commented out the entire pushMatrix()-3D-popMatrix() section after rect().

 if (! isSounding.get(oscClientMidiChan)) {
 sendOSCMessage("noteon", oscClientMidiChan, pitch, velocity);
 // NOTE_ON CODE was here.
 isSounding.put(oscClientMidiChan, true);
 }
 } else { // This else is counterpart to “if (isBeingPressed) {“ further up.
 if (isSounding.get(oscClientMidiChan)) {
 sendOSCMessage("noteoff", oscClientMidiChan, pitch, velocity);
 // NOTE_OFF code was here.
 isSounding.put(oscClientMidiChan, false);

page 6

 }
 }
 //} catch (InvalidMidiDataException dx) {

At this point you should be able to start the server on a PC or laptop, start the client on the same machine,
and play notes on the server via the client user interface.

13. Running on the Android device is not required before turning in your assignment unless you
want the November 21 and optional performer bonus points listed in bullet C on the first
page, or you just want to use an Android device. To run on the Android after you have it
working using a laptop or PC, do the following steps.

a. Save and start CSC220F19MIDIassn4Server running in Java mode. Once you start running
any sketch in Android mode, Processing tends to want to run everything in Android mode.

b. Enable your Android tablet or phone for USB debugging by going to Settings -> About
device, and then tapping the Build number 7 times to enable USB debugging. On the KU
Samsung tablets the sequence is Settings -> About tablet -> Software information -> Build
number 7 times. If Developer options show up under Settings, this has already been done.
Also, make sure your Android screen is unlocked and be ready to enable USB debugging
during the following steps.

c. In Processing’s Sketch menu, go to Import Library -> Add Library for Android mode, if it is
not already there. You may have to auto-update the Android SDK on your computer.

d. With the server running per step (a), and with your most recent changes to
CSC220F19Androidassn4Client saved (make sure setup() uses fullScreen(P2D)), plug the Android
device into the PC via its USB cable. If any other Android apps pop up on the PC/laptop, such as
Android File Transfer, quit out of them. They compete with Processing for the connection.

e. Enable Android Internet access for the sketch via the Android -> Sketch Permissions menu as seen
in Figure 4.

Figure 4: Enable Android Internet permission

f. Run CSC220F19Androidassn4Client on the Android device, and unplug the USB cable.5 It will
work in either vertical or horizontal orientation – tall or wide, respectively – but I have found that
horizontal (wide) works best to avoid interacting with Android hot locations. Changing orientation

																																																													
5	You	can	leave	the	Android	USB	cable	plugged	in	to	see	println()	debugging	statements	on	your	PC	or	laptop,	but	
you	should	do	final	testing	with	the	USB	cable	unplugged.	

page 7

after the sketch has started running on the Android restarts the sketch, so be careful not to do
that.6

g. You will have to go into Android’s Settings -> Connections to connect to the wireless LAN the first
time for that router. This working sketch stays on the Android device after disconnecting the USB
cable.

Figure 5: An Android screen shot while running the sketch

																																																													
6	Correction	added	11/12/2019	–	insert	this	statement	immediately	after	startOSC();	at	the	bottom	of	function	
setup():	orientation(LANDSCAPE);	it	has	no	effect	when	running	the	client	on	the	PC,	but	it	keeps	the	Android	
client	in	landscape	orientation,	and	avoid	restarts	on	re-orientation.	Restarts	still	occur	if	you	minimize	the	sketch	
on	Android.	Also,	in	the	Menus	tab,	change	the	statement	near	the	top	of	function	startOSC()	from	globalPointSize	
=	height	/	48	;	to	globalPointSize	=	height	/	24	;	for	the	Galaxy	tablet	in	landscape	mode.	Adjust	this	statement	to	
suit	your	device.	

page 8

GRADING:

Mandatory attendance at the November 19 class in the planetarium is worth 10% of the project
as documented in bullet B on the first page. See other bonus point opportunities on page 1.

Each of steps 3, 4, 5, 8, 9, 10, 11, and 12, starting on page 2, is worth 11.25% of the project.

You will need to zip your CSC220F19Androidassn4Client into a standard zip archive and turn that
in via D2L in order for me to get all of your .pde files from the editor tabs. Use the zipping instructions
here to create a zip file. “Here is how to compress your sketch folder into a .zip file (NOT 7z) on our
Windows network. Right click the sketch folder.”:
http://faculty.kutztown.edu/parson/spring2018/CSC120Spring2018.html
Mac and Linux have command line “zip -r CSC220F19Androidassn4Client.zip
CSC220F19Androidassn4Client” command line zippers, as well as zip utilities available from their
command GUIs.
You can use the 7z utility on Windows, but you must choose the “Add to
CSC220F19Androidassn4Client.zip” option to create a standard .zip file archive of the sketch folder. If
you turn in a .7z or other compressed format that requires me to go fishing for an extractor, I will deduct
points. You can substitute your sketch directory name for CSC220F19Androidassn4Client, but this must
be in a standard .zip format. Turn that .zip file in via D2L by the deadline.

