

page 1

CSC 220 Object Oriented Multimedia Programming, Fall 2019
Dr. Dale E. Parson, Assignment 3, a 2D/3D visual-music MIDI virtual keyboard in Processing.
This assignment is due via D2L Assignments Assignment 3 MIDI by 11:59 PM on 8 November.

When using Processing on the Kutztown campus Windows computers, make sure to start out every time
by setting your Processing Preferences -> Sketchbook Location to U:\Processing. The U:\ drive is a
networked drive that will save your work and make it accessible across campus. If you save it to your
desktop or the lab PC you are using, you will lose your work when you log out. You must save it to the U:\
drive. If you do not have a folder called Processing under U:\, you must create one using the Windows
Explorer. Processing Preferences is under the File menu on Windows.

If you will be downloading Processing 3.X and running it using an off-campus computer (do not use version
2.X for assignments), you can copy your project sketch named CSC220F19MIDIassn3 to a flash drive on
one machine, and then copy it from the flash drive to another Processing sketch folder.

You can copy and paste the text for my handout sketch into a new sketch, then save it, as a starting point.
Create your CSC220F19MIDIassn3 folder by running File -> Save As -> CSC220F19MIDIassn3 after
setting up your sketch folder. There are four .pde files in the handout code. The main one has the same
name as the sketch, CSC220F19MIDIassn3. The other three are Note, Musician, and CartesianPolar.
See Assignment 3 on the course page https://faculty.kutztown.edu/parson/fall2019/CSC220Fall2019.html
to see how to start the project uses these files.

REQUIREMENTS (please reread this to make sure you didn’t miss any when turning in):

Search for STUDENT comments (upper case) in the handout code to find these regions of code.

1. (10%) Set sketch variables programNumber (for instrument voice per this list1, subtracting 1 since

the Java MIDI API starts at 0, not 1) and controlEffectNumber for an effect2, to numbers customized

1 http://midi.teragonaudio.com/tutr/gm.htm
2 http://midi.teragonaudio.com/tech/midispec.htm

page 2

for your instrument and voice. Add a comment at the top, after your name, telling me the values you
selected for these two variables. “Finding your voice” requires some experimentation. Also, if your
name or this comment is missing from the top of the sketch, I will deduct points. It is hard to keep track
of assignment grading when your name and required documentation are missing. Try to find a
controlEffectNumber that has some audible effect with your programNumber when
controlEffectData2 is set to 127. You have to change these variable values in the code. Sketch
CSC220F19MIDIc (see course page) allows you to experiment with programNumber using LEFT
and RIGHT arrows, but I have disabled controlEffectNumber exploration via UP and DOWN arrows
because some effects silence the MIDI channel altogether.

2. (22.5%) You must rewrite function mapXY() in the main sketch tab to set permanent locations for
Note objects in the display. Handout mapXY() assigns random locations, resulting in this unintuitive
layout.

Figure 1: Handout, random layout of Note objects located by mapXY().

That outer circle (toggled using ‘b’) gives the base of the planetarium dome. No note may be entirely
outside of it. Comments above mapXY() give the design requirements:

// STUDENT REQUIREMENTS FOR mapXY(): You must rewrite mapXY so that:
// 1. It always returns a location within the "dome", which is a circle centered
// on the sketch's 0,0,0 coordinate, which is the center of the window or projector.
// 2. Try to avoid placing two Note objects at the same location. My solution (not shared)
// accomplishes that by using parameters pitch, minpitch, and maxpitch to position
// the Notes in a circle around the center of the diplay, and uses velocityStep and
// velocityStepsTotal to determine the distance of each Note from the 0,0,0 center.
// I will give you pseudocode for my solution.
// 3. You may use an approach other than mine in requirement 2 (previous paragraph);
// if you do, try to arrange Notes in some logical, regular order by pitch & velocityStep.
// NOTE: If you use fewer than all of this function's parameters, you will get
// warnings (not errors) about unused parameter(s). Just ignore those warnings.
int [] mapXY(int pitch, int minpitch, int maxpitch, int velocityStep, int velocityStepsTotal)

See the handout code comments for pseudocode that explains using helper functions in the CartesianPolar
tab to lay the Notes out using polar geometry, as in Figure 2. Polar geometry does not use X,Y coordinate
pairs. Instead, it uses RADIUS, ANGLE coordinate pairs. A RADIUS of 0 is the center of the display, and
a RADIUS of 1 is the edge of the bounding circle. An ANGLE of 0 goes from center to the right in the
above figure, proceeding counterclockwise by degrees until coming full circle at TWO_PI radians (360
degrees). I supply conversion functions to go from polar coordinates to display coordinates, along with

page 3

mapXY() pseudocode in the handout. Feel free to come up with a different approach, or you can use this.

Figure 2: My solution’s Polar geometry Note layout.

I have posted color copies of Figure 1 and Figure 2 on the course page.

3. (22.5%) The Note tab in the handout code defines class Note. Please read and understand that code,

including how it works with the rest of your sketch. We will go over all handout code in class. Your
first Note requirement is to replace the rect() function call in Note.display() with a different 2D shape
that is at least as wide and high as mine. Look for the first STUDENT comment in the Note tab.

4. (22.5%) Your next requirement is to replace the box() function call within Note.display() with a
different 3D shape to be displayed with similar size in the X,Y,Z directions when that Note is being
sounded. You can try a sphere deformed using scale(X,Y,Z), or you can use the PShape function that
creates a cylinder in demo script CSC220F19DemoPShapeCylinder, also linked on the course page.
Or, you can use my PShape or your own custom PShape, including mine or yours from assignment 2.
Test to make sure it works and has some visual appeal. Scale the Z depth by the velocity, similar to my
current box() call. Louder notes must make deeper (in Z) 3D shapes than more quiet notes. See
STUDENT comment in Note.

5. (22.5%) Implement function Note.setShearXSpeed(float speedInDegrees), see STUDENT comments.
You will need two data fields in the class, one to store current shearX amount in degrees, and one to
store this speed. Apply the shearX() function in Note.display at the appropriate place. When the
speedInDegrees parameter is 0, set both the object’s shearX amount and its shearX speed to 0, i.e., no
shearing. Use the approach used for updating 2D rotation in degrees from earlier sketches that had both
speed and location variables. You can just let the shearX amount variable continue past 360 or -360
degrees, since degrees just wrap around at that point. Here is a video of shearing at 20 seconds.

TURNING IT IN: When your work is completed, and you have re-read and satisfied project requirements
(including all STUDENT instructions in code comments), you can use the Windows Explorer to find the
file CSC220F19MIDIassn3 folder; you must ZIP (standard zip format) & turn in the entire folder, since it
contains multiple files. If you find you have created an error, you can drop an updated assignment into the
dropbox. Assignment 3 is under Assessments -> Assignments in our D2L account. If you are working on
a laptop or your machine at home, turn it in via D2L in the same way. Finally, because your sketch uses
multiple files, turn in a .zip archive of the entire CSC220F19MIDIassn3/ directory instead of the individual
files. I cannot run a sketch that depends on additional files without receiving those files. I will deduct points
if there are missing files.

