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MATH 140 

DR. MCLOUGHLIN’S CLASS 

STATISTICAL FORMULAE FOR TESTS HANDOUT   
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The Binomial  variate is the number of successes in n-independent Bernoulli trials where the 

probability of success at each trial is p. The parameters are p and n (the number of trials). 
 

p  (0, 1)   n    x  {0, 1, 2, . . . , (n - 1), n}  
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 = np  
 

 2 = np(np + (1 - p))  
 

 3 = np((n-1)(n-2)p2 + 3p(n - 1) + 1)  
 

2 = np(1 - p) 
 

 3 = np(1 -p)((1 - p) - p)  
 

 4 = np((1 + 3p(1-p)(n - 2))  

 

Let U = S be a well defined universe (the sample space) for our work S will always be able to 

be a subset of   (the reals, of course). 

  

Let D = {X1, X2, X3, . . . , Xn} be a finite data set (or we say let X1, X2, X3, . . . , Xn be a finite random 

sample for X).   
 
 

The mode of the sample is a value or values you should know how to find.   

The median of the sample is a value or values you should know how to find.   

 

The arithmetic mean of the sample is the value A where A = 
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The geometric mean of the sample is the value  G where
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for samples such that Xk  >  0  for all k n 

 

The harmonic mean of the sample is the value H where
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for samples such that Xi    0  for all i n 

The variance, 
2S or 

2

XS , is defined as 
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The standard deviation, S or XS , is defined as  S = 
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The range is the (highest value – lowest value)    

 

The inter-quartile range is 3 1Q Q−   

 

The coefficient of variation of the sample is the value C where C = 
S

(100%)
X
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The mean absolute deviation, MAD, is defined as  MAD = 
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Let D = {X1, X2, X3, . . . , Xn} be a finite data set from a population of interest and  

C = {Y1, Y2, Y3, . . . , Yn} be a finite data set from a population of interest.  

The population parameters for X are the mean, X , the standard deviation, X , etc. ; the 

population parameters for Y are the mean, Y , the standard deviation, Y , etc.; and, the 

population (Pearson product-moment) correlation is XY  

n

k

k 1

X

X
n

==


  X  is X̂  

n

k

k 1

Y

Y
n

==


 Y  is Y̂   
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  YS  is Y̂  
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Independent t-test Pooled Variance Formula 
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 with df being 1 2n n 2+ −   (‘small’ sample) 
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 with df being 1 2n n 2+ −  (‘large’ sample) 

 

Paired Sample t-test 

First compute xyr  
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Since f the samples are related (two measures from the same subject or matched pairs), the correlated data 

formula is used. 
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with df number of pairs minus one.  

End, Formulae Handout.  


