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Abstract

Let Fq be a finite field, where q = pe for some odd prime p and integer e ≥ 1.
Let f, g ∈ Fq[x, y] be monomials. The monomial graph Gq(f, g) is a bipartite
graph with vertex partition P ∪L, P = F3

q = L, and (x1, x2, x3) ∈ P is adjacent
to [y1, y2, y3] ∈ L if and only if x2 + y2 = f(x1, y1) and x3 + y3 = g(x1, y1).
Dmytrenko, Lazebnik, and Williford proved in [6] that if p ≥ 5 and e = 2a3b

for integers a, b ≥ 0, then all monomial graphs Gq(f, g) of girth at least eight
are isomorphic to Gq(xy, xy2), an induced subgraph of the point-line incidence
graph of a classical generalized quadrangle of order q. In this paper, we will
prove that for any integer e ≥ 1, there exists a lower bound p0 = p0(e) depending
only on the largest prime divisor of e such that the result holds for all p ≥ p0.
In particular, we will show that for any integers a, b, c, d, y ≥ 0, the result holds
for p ≥ 7 with e = 2a3b5c; p ≥ 11 with e = 2a3b5c7d; and p ≥ 13 with
e = 2a3b5c7d11y.
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1. Introduction

We begin with some definitions. In this paper, a graph G = (V,E) consists
of a finite set V of vertices and a set E of edges, where edges are two-element
subsets of V . If {u, v} ∈ E for some u, v ∈ V , then u and v are said to be
adjacent. The degree of a vertex v is the number of vertices adjacent to v. If
every v ∈ V has degree t, then G is called a t-regular graph. A uv-walk of length
k ≥ 1 in G is a sequence (u = v0, e1, v1, e2, v2, ..., ek, vk = v) of alternating
vertices and edges, where ei = {vi−1, vi} for i = 1, ..., k. For every vertex u,
we define (u) to be a uu-walk of length 0. G is connected if for every pair of
vertices u and v, there exists a uv-walk in G. In a connected graph, the distance
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from vertex u to vertex v is the length of a shortest uv-walk. The diameter of
a connected graph G is the largest distance between any two of its vertices. A
k-cycle is a uv-walk of length k ≥ 3 where u = v, but no other vertices repeat.
If G contains any cycles, the girth of G is the length of a shortest cycle in G. G
is called bipartite if V may be partitioned into two sets, say P and L, such that
every edge {x, y} has the property that x ∈ P and y ∈ L (or vice versa). Other
standard graph theory definitions may be found, for example, in Bollobás [1].

Let Fq be a finite field of order q. A permuation polynomial of Fq is a
polynomial f ∈ Fq[x] whose associated function on Fq that maps a 7→ f(a) is a
bijection.

Now, let f2, ..., fn ∈ Fq[x, y] be monomials. A monomial graph Gq(f2, ..., fn)
of dimension n is a bipartite graph where P = Fnq = L, and (x1, x2, ..., xn) ∈ P
is adjacent to [y1, y2, ..., yn] ∈ L if xi + yi = fi(x1, y1) for all i = 2, 3, ..., n. In
this paper, we will focus only on the n = 3 case.

A central reason behind studying monomial graphs is to construct new gen-
eralized quadrangles of odd prime power order; we start with a definition.

Definition 1. Let s ≥ 1 and t ≥ 1 be integers. A (finite) generalized quadrangle
of order (s, t) is an incidence structure (P,L, I) in which P and L are disjoint
(nonempty) sets of objects called points and lines (respectively), and for which
I is a symmetric incidence relation on P ∪ L satisfying the following axioms:

1. Each point is incident with t+1 lines and two distinct points are incident
with at most one line.

2. Each line is incident with s+1 lines and two distinct lines are incident
with at most one point.

3. If P is a point and l is a line not incident with P , then there is a unique
pair (Q,m) ∈ P × L for which PImIQIl.

For information on generalized quadrangles, see Payne and Thas [15] or Van
Maldeghem [13], for example. In this paper, we will be interested in the case
s = t ≥ 2; we will therefore use the notation GQ(t) in place of GQ(t, t), and say
“order t” instead of “order (t, t)”.

No GQ(t) of non-prime power order are known. When t is a power of 2,
many examples of nonisomorphic generalized quadrangles are known. However,
for a given odd prime power t, only two nonisomorphic generalized quadrangles
are known. These classical examples are usually denoted by Q4(t) and W (t),
and are dual to each other.

From now on, instead of using the geometric perspective from Definition 1,
we will consider the corresponding point-line incidence graphs, often called Levi
graphs, of these geometries. As a graph, GQ(t) is a bipartite (t + 1)-regular
graph with diameter 4 and girth 8; the two sets of the vertex partition of GQ(t)
each contain t3 + t2 + t + 1 vertices. Since Q4(t) and W (t) are dual, their
incidence graphs are isomorphic; thus, from a graph theoretical perspective,
only one GQ(t) of odd prime power order is known (up to graph isomorphism).

The primary motivation for this paper, as well as for Dmytrenko, Lazebnik,
and Williford in [6], was to construct a new GQ(t) of odd prime power order.
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Let q be an odd prime power. Consider an edge {u, v} of GQ(q), and let T be
the subgraph of GQ(q) induced by the set of all vertices at a distance at most
two from u or v. As the girth of GQ(q) is eight, T is a tree (a connected graph
with no cycles) on 2(q2 + q + 1) vertices. It turns out that the graph obtained
from the classical GQ(q) by removing T is isomorphic to the monomial graph
Γ3(q) := Gq(xy, xy2); for a proof, see Dmytrenko [5]. This suggests a reasonable
strategy for constructing a new generalized quadrangle of odd order. First,
construct a q-regular girth eight graph that is not isomorphic to Γ3(q), and
has vertex partition P ∪ L such that |P | = q3 = |L|. Second, “attach” (an
isomorphic copy of) T to it. The viability of the first step was investigated in
[6], where it was conjectured that the strategy fails because a suitable monomial
graph does not exist:

Conjecture 2. [6] Let q = pe be an odd prime power. Then every monomial
graph over Fq of girth at least eight is isomorphic to Γ3(q).

This conjecture is of particular interest because it stands in stark contrast to the
case when q is a power of 2. As explained in [6], “there are examples of monomial
graphs of girth eight which do lead to nonisomorphic quadrangles,” and so the
described strategy of constructing new generalized quadrangles succeeds in this
case. See Payne [14], [13], and Cherowitzo [3] for additional information.

To address Conjecture 2, the following result was proven in [6]:

Theorem 3. [6] Let q = pe be an odd prime power, with p ≥ 5 and e = 2a3b for
integers a, b ≥ 0. Then every monomial graph over Fq of girth at least eight is
isomorphic to Γ3(q) and has girth eight. Furthermore, for 3 ≤ q ≤ 1010, every
monomial graph over Fq nonisomorphic to Γ3(q) has girth at most six.

The purpose of this paper is to extend the results of Theorem 3 towards
Conjecture 2. Our main result is the following theorem:

Theorem 4. Let q = pe be an odd prime power, with:
1. p ≥ p0, a lower bound that depends only on the largest prime divisor of e.

In particular, suppose:
2. e = 2a3b5c for integers a, b, c ≥ 0 and p ≥ 7,
3. e = 2a3b5c7d for integers a, b, c, d ≥ 0 and p ≥ 11, or
4. e = 2a3b5c7d11y for integers a, b, c, d, y ≥ 0 and p ≥ 13.

Then every monomial graph over Fq of girth at least eight is isomorphic to Γ3(q),
and hence has girth exactly eight.

Theorem 4 implies that if q = pe for any noted combination of p and e, it
is impossible to construct a new GQ(q) using the strategy explained above.
This result severely limits the cases in which the described construction could
potentially succeed.

To prove Theorem 4, we will make use of several results. Before presenting
them, a bit of notation is necessary. Let (k0, k1, ..., kn)p denote the base p
representation of k; in other words, k = (k0, k1, ..., kn)p if k =

∑n
i=0 kip

i with
integers ki such that 0 ≤ ki ≤ p− 1 for all i = 0, 1, ..., n.
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Theorem 5 (Kummer’s Theorem [10]; see also Knuth [9]). A prime p divides(
r
s

)
exactly n times if and only if adding s and r − s in base p produces exactly

n carries.

Theorem 6 (Lucas’ Theorem [12]; see also Granville [7]). Let p be prime,
r = (r0, r1, ..., rn)p and s = (s0, s1, ..., sn)p. Then

(
r
s

)
≡
(
r0
s0

)(
r1
s1

)
· · ·
(
rn
sn

)
(mod p).

Theorem 7 (Hermite-Dickson criterion; proven by Hermite [8] and Dickson [4];
see also Lidl/Niederreiter [11]). Let Fq be of characteristic p. Then f ∈ Fq[x] is
a permutation polynomial of Fq if and only if the following two conditions hold:

1. f has exactly one root in Fq;
2. for each integer t with 1 ≤ t ≤ q − 2 and p - t, the reduction of f t

(mod xq − x) has degree at most q − 2.

The Hermite-Dickson criteria is commonly stated in this form because in
order to prove that f ∈ Fq[x] is a permutation polynomial, it is convenient to
check only those t such that p - t. However, it is noted in [11] that given a
permutation polynomial f ∈ Fq[x], the reduction of f t (mod xq−x) has degree
at most q − 2 for all integers t with 1 ≤ t ≤ q − 2; the condition p - t is not
required. It is for this reason that we will not be concerned with the condition
p - t in this paper.

Finally, we will need the following results from [6]:

Theorem 8. Let q = pe be an odd prime power. Then every monomial graph
of girth at least eight is isomorphic to the graph Gq(xy, xky2k), where k is not
divisible by p. If q ≥ 5, the following statements also hold:

1. 1 ≤ k < q−1
2 , gcd(k, q − 1) = 1, and k ≡ 1 (mod p− 1).

2. ((x+ 1)2k − 1)xq−1−k − 2xq−1 ∈ Fq[x] is a permutation polynomial of Fq.

We will now discuss how the remainder of this paper is structured. In section
2, we will use the Hermite-Dickson criterion to derive a system of congruences.
We will use these congruences in section 3 to prove upper bounds on the base p
digits of k. Finally, these bounds will be used in section 4 to prove Theorem 4.

2. The Congruences

Let e ≥ 1 be an integer, p an odd prime, and q = pe. Let G be a monomial graph
of girth at least eight. Then by Theorem 8, G is isomorphic to Gq(xy, xky2k)
where

F = ((x+ 1)2k − 1)xq−1−k − 2xq−1 ∈ Fq[x]

is a permutation polynomial of Fq. The Hermite-Dickson criterion implies that
the coefficient of xq−1 in F t (mod xq − x) must be zero. We will therefore
examine F t:
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F t =
h“

(x+ 1)2k − 1
”
xq−1−k − 2xq−1

it

=

tX
j=0

 
t

j

!“
(x+ 1)2k − 1

”t−j

x(t−j)(q−1−k)(−1)j2jxj(q−1)

=

tX
j=0

(−1)j2j

 
t

j

!“
(x+ 1)2k − 1

”t−j

x−(t−j)k+t(q−1)

=

tX
j=0

(−1)j2j

 
t

j

! 
t−jX
h=0

 
t− j

h

!
(x+ 1)2k(t−j−h)(−1)h

!
x−(t−j)k+t(q−1)

=

tX
j=0

t−jX
h=0

(−1)j+h2j

 
t− j

h

! 
t

j

!
2k(t−j−h)X

i=0

 
2k(t− j − h)

i

!
xi−(t−j)k+t(q−1) (1)

To determine the coefficient of xq−1, we note that xi−(t−j)k+t(q−1) ≡ xq−1

(mod xq−x) if and only if i−(t−j)k+t(q−1) ∈ {q−1, 2(q−1), 3(q−1), ...}, which
occurs if and only if i− (t− j)k ∈ {(1− t)(q−1), (2− t)(q−1), (3− t)(q−1), ...}.
As 0 ≤ i ≤ 2k(t − j − h) and 1 ≤ k < q−1

2 , we have the following bounds on
i− (t− j)k:

−(t− j)k ≤ i− (t− j)k ≤ k(t− j)− 2kh = k(t− j − 2h) <
t− j − 2h

2
(q − 1)

Now, i− (t− j)k satisfies one of the following conditions:

1. i− (t− j)k = (a− t)(q − 1) for some positive integer a < t with t 6= j.
Since 0 ≤ i = (t− j)k + (a− t)(q − 1), we have k ≥ (t−a)(q−1)

t−j ≥ q−1
t

(as t− a > 0 and 0 ≤ j < t).
2. i− (t− j)k = (a− t)(q − 1) for some positive integer a > t with t 6= j.

Since 2k(t − j) − 2kh = 2k(t − j − h) ≥ i = (t − j)k + (a − t)(q − 1), we
have (t−j)k ≥ 2kh+(a− t)(q−1), and so k ≥ (a−t)(q−1)

t−j−2h ≥ q−1
t (this uses

a − t > 0; in addition, 0 < (a − t)(q − 1) = i − (t − j)k < t−j−2h
2 (q − 1)

implies that t− j − 2h > 0).
3. i− (t− j)k = 0 (i.e. a = t)

Since i−(t−j)k ≤ k(t−j−2h), this case requires t−j−2h ≥ 0
(
so h ≤ t−j

2

)
,

but there are no additional restrictions on k.
4. If j = t, then −(t − j)k ≤ i − (t − j)k ≤ k(t − j) − 2kh implies i = 0.

Therefore, i = 0 = (t− j)k, which was accounted for in case 3.

This proves that if we assume k < q−1
t , we need only consider case 3 terms.

Therefore, we will proceed under this assumption (in fact, we will show in the
proof of Proposition 10 that all k relevant to Theorem 4 satisfy this bound).
Substituting i = (t−j)k into (1) yields the coefficient of xq−1 in F t (mod xq−x);
as this coefficient must be zero by Hermite-Dickson, we have:
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t∑
j=0

(−1)j2j
(
t

j

) b t−j2 c∑
h=0

(−1)h
(
t− j
h

)(
2k(t− j − h)
k(t− j)

)
≡ 0 (mod p). (2)

We will now evaluate (2) for some small values of t; the result will be a
sequence of congruences. We will use (κi) to denote the congruence result-
ing from the substitution t = i; congruence (κi) must be satisfied whenever
Gq(xy, xky2k) has girth at least eight and k < q−1

i . The system of congruences
will later be used to determine which k meet these criteria. When t = 1, (2)
yields −2 +

(
2k
k

)
≡ 0 (mod p), and so(

2k
k

)
≡ 2 (mod p). (κ1)

When t = 2, we have 2 − 4
(
2k
k

)
+
(
4k
2k

)
≡ 0 (mod p); substituting (κ1) implies

2− 4 · 2 +
(
4k
2k

)
≡ 0 (mod p), and therefore(

4k
2k

)
≡ 6 (mod p). (κ2)

Continuing this process of evaluating (2) for subsequent values of t, and substi-
tuting previous congruences where possible, yields the following:

 
8k

4k

!
− 4

 
6k

4k

!
≡ 10 (mod p) (κ4) 

12k

6k

!
− 6

 
10k

6k

!
+ 15

 
8k

6k

!
≡ 84 (mod p) (κ6) 

16k

8k

!
− 8

 
14k

8k

!
+ 28

 
12k

8k

!
− 56

 
10k

8k

!
≡ 186 (mod p) (κ8) 

20k

10k

!
− 10

 
18k

10k

!
+ 45

 
16k

10k

!
− 120

 
14k

10k

!
+ 210

 
12k

10k

!
≡ 1276 (mod p) (κ10)

In general, it is clear from (2) that

b 2s−1
2 c∑

h=0

(−1)h
(

2s
h

)(
2k(2s− h)

2ks

)
≡ b2s (mod p) (κ2s)

for some integer b2s.
The reader should note that (κ3), (κ5), (κ7), and (κ9) were omitted from the

above list because they will not be needed in this paper. However, they were
used to derive the above list of congruences. Furthermore, it can be proven that
b2s = 22s − (−1)s

(
2s
s

)
(and that b2s+1 = 22s+1); the proof is straightforward

6



(although technical), and is available on the author’s webpage. Note that this
implies b2s > 0 for all integers s > 0. Finally, we remind the reader that (κt)
has only been proven to hold when k < q−1

t .

3. The Base p Digits of k

The proof of Theorem 4 will rely heavily on the base p representation of k.
Therefore, we will start by limiting the base p digits that can appear in that
representation. Let e ≥ 1 be an integer, p be an odd prime, and q = pe. Assume
that Gq(xy, xky2k) has girth at least eight. Recall that we may use (κt) if and
only if k < q−1

t . Before proving our main result, we will need a lemma:

Lemma 9. Let q = pe be an odd prime power. Assume the graph Gq(xy, xky2k)
has girth at least eight, where 1 ≤ k < q−1

2 .

1. If p = 3, then all base p digits of k are at most 1.
2. If p ≥ 5, then all base p digits of k are at most p−1

4 .

Proof. Recall the base p notation k = (k0, ..., kn)p if k =
∑n
i=0 kip

i with
integers ki such that 0 ≤ ki ≤ p− 1 for all i = 0, 1, ..., n.

1. Let p = 3. Consider (κ1); as 3 - 2, we know 3 -
(
2k
k

)
. By Kummer’s

Theorem, there are no carries when k and 2k − k = k are added in base
p. Therefore, 0 ≤ 2ki ≤ p− 1 = 2, and so 0 ≤ ki ≤ 1.

2. This is Theorem 2 of [6].

Proposition 10. Let e, z ≥ 1 be integers. Then there exists prime pz such that
for all primes p ≥ pz, the following statement holds:

If q = pe, 1 ≤ k < q−1
2 , and Gq(xy, xky2k) has girth at least eight,

then all base p digits of k are at most p−1
2z .

Proof. We proceed by induction on z. When z = 1, the result follows from
Lemma 9 with p1 = 3. When z = 2, the result follows from part 2 of Lemma
9 with p2 = 5. Now, assume that for some fixed integer z ≥ 1, the result holds
for all v with 2 ≤ v < z.

First, we will show that 1 ≤ k ≤ q−1
2(z−1) . If not, k > q−1

2(z−1) . Then
k < q − 1 < 2(z − 1)k. Let k = (k0, k1, ..., kn)p. By the induction hypothesis,
each ki ≤ p−1

2(z−1) ; so 2(z − 1)k = (2(z − 1)k0, 2(z − 1)k1, . . . , 2(z − 1)kn)p.
Furthermore, k < q− 1 < 2(z− 1)k implies that q− 1 has at least as many base
p digits as k, but no more than 2(z − 1)k does. As k and 2(z − 1)k each have
n+1 base p digits, q−1 = pe−1 must also have n+1 digits. So n+1 = e. Since
q−1 is the largest number with e base p digits, this contradicts q−1 < 2(z−1)k.
Hence, k ≤ q−1

2(z−1) . Furthermore, equality would imply 2(z − 1)k = q − 1, and
so k|(q−1). This means k = gcd(k, q−1), which contradicts part 1 of Theorem
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8 unless k = 1 and q = 2z − 1. Thus, we conclude that equality cannot occur
for p > 2z − 1; so 1 ≤ k < q−1

2(z−1) for all p > 2z − 1.
Let p > 2z − 1. Since 1 ≤ k < q−1

2(z−1) , the congruence (κ2(z−1)) applies: 
(4z − 4)k

2(z − 1)k

!
+ a1

 
(4z − 6)k

2(z − 1)k

!
+ a2

 
(4z − 8)k

2(z − 1)k

!
+ ...

+ az−3

 
(2z + 2)k

2(z − 1)k

!
+ az−2

 
(2z)k

2(z − 1)k

!
≡ b2(z−1) (mod p),

where ai = (−1)i
(
2(z−1)

i

)
and b2(z−1) > 0 is a positive integer. Define p′z to be

the largest prime that divides b2, b4, b6, . . . , or b2(z−1), and suppose

p ≥ pz := min{p|p is prime, p > p′z, and p > 2z − 1}.

Note that p′z is well-defined because every b2s 6= 0. Since p - b2(z−1), p cannot
divide every binomial coefficient on the left-hand side of (κ2(z−1)).

As we will show below, the cases p -
(
(4z−4)k
2(z−1)k

)
, p -

(
(4z−6)k
2(z−1)k

)
, . . . , p -

(
(2z+2)k
2(z−1)k

)
,

and p -
(

2zk
2(z−1)k

)
imply the upper bounds 0 ≤ ki ≤ p−1

4z−4 , 0 ≤ ki ≤ p−1
4z−6 , . . . ,

0 ≤ ki ≤ p−1
2z+2 , and 0 ≤ ki ≤ p−1

2z , respectively. At least one of these cases must
hold, and so 0 ≤ ki ≤ p−1

2z , as claimed.
We will now illustrate how to derive the bound implied by the case

p -
(

2zk
2(z−1)k

)
; the others may be proven similarly. By Kummer’s Theorem,

p -
(

2zk
2(z−1)k

)
implies that there are no carries when 2(z−1)k and 2zk−2(z−1)k =

2k are added in base p. Since the induction hypothesis implies that the base p
digits of k are at most p−1

2(z−1) , 2(z−1)k = (2(z−1)k0, 2(z−1)k1, . . . , 2(z−1)kn)p
and 2k = (2k0, 2k1, . . . , 2kn)p. Thus, 0 ≤ 2(z − 1)ki + 2ki ≤ p− 1 for all i, and
so 0 ≤ ki ≤ p−1

2z .

Note that in the above proof, we excluded more primes than was necessary.
Specifically, the argument holds for all primes p > 2z − 1 that do not divide b2,
b4, b6, . . . , or b2(z−1). We will now apply the Proposition 10 (and this fact) to
some small values of z to obtain the following corollary:

Corollary 11. Let q = pe be an odd prime power. Assume the graph Gq(xy, xky2k)
has girth at least eight, where 1 ≤ k < q−1

2 .

1. If p ≥ 7, then all base p digits of k are at most p−1
6 .

2. If p ≥ 11, then all base p digits of k are at most p−1
10 .

3. If p ≥ 13, then all base p digits of k are at most

{
3 if p = 31
p−1
12 else.

Proof.

1. When z = 3, p′3 = 5 = 2z − 1 is the largest prime factor of b2 or b4; so
ki ≤ p−1

6 for all p ≥ p3 = 7.
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2. When z = 4, 7|84 implies that p′4 = 7 = 2z−1, and so p4 = 11. Therefore,
ki ≤ p−1

8 for all p ≥ p4 = 11. When z = 5, p′5 = 31 > 9 = 2z − 1, and so
p5 = 37; however, the only prime p ≥ 11 dividing b2, b4, b6, or b8 is p = 31.
Therefore, ki ≤ p−1

10 for all p ≥ p5 = 11 except for p = 31, in which case
ki ≤

⌊
31−1

8

⌋
= 3. The result holds because

⌊
31−1
10

⌋
= 3 as well.

3. Let z = 6. As 1276 = 22 · 11 · 29, ki ≤ p−1
12 for all p ≥ 13 except for p = 29

and p = 31. When p = 29, ki ≤
⌊

29−1
10

⌋
= 2 =

⌊
29−1
12

⌋
. As in case 2 above,

p = 31 implies that ki ≤
⌊

31−1
8

⌋
= 3.

4. Proof of Theorem 4

In the remainder of this paper, we prove Theorem 4 by adapting the proof
(from [6]) of Theorem 3. First, we must prove Proposition 12, which will use
the notation pz that was introduced in Proposition 10.

Proposition 12. Let e > 1 be an integer; denote the largest prime divisor of e
by φ. Assume p ≥ pφ+1

2
, let q = pe, and let 1 ≤ k < q−1

2 . If G = Gq(xy, xky2k)
has girth at least eight and p - k, then k ≡ 1 (mod q − 1), and so k = 1.

As can be seen in the following proof, the condition “p ≥ pφ+1
2

” may be
replaced by the more general condition that “all base p digits of k are at most
p−1
φ+1 .” However, we use “p ≥ pφ+1

2
” to emphasize that for a given e, the propo-

sition holds for all but finitely many p.

Proof. Let q = pe be an odd prime power with p ≥ pφ+1
2

. Suppose 1 ≤ k < q−1
2 ,

and let k =
∑N
i=0 kip

i. We proceed by induction on e. If e is prime, then N < φ.
Furthermore, the assumption that p ≥ pφ+1

2
implies that all base p digits of k

are at most p−1
φ+1 . Therefore,

1 ≤ k0 + ...+ kN ≤
p− 1
φ+ 1

(N + 1) ≤ p− 1.

Since it is also true that 1 ≡ k ≡ k0 + ...+ kN (mod p− 1), this forces
k0 + ...+ kN = 1. Thus, p - k implies k = 1.

Now, assume that for some integer e ≥ 1, the result holds for all integers e′

with 2 ≤ e′ < e. Define e = rt for some prime divisor r of e; note that r ≤ φ.
Since t|e, Fpt is a proper subfield of Fpe . Therefore, since G has girth at least
eight over Fpe , G must also have girth at least 8 over the subfield Fpt . Thus,
our induction hypothesis states that k ≡ 1 (mod pt − 1). This implies that

1 ≡ k ≡
rt−1∑
i=0

kip
i mod t (mod pt − 1). (3)

Furthermore,
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rt−1∑
i=0

kip
i mod t ≤

rt−1∑
i=0

(
p− 1
φ+ 1

)
pi mod t ≤ r

t−1∑
i=0

(
p− 1
φ+ 1

)
pi

≤ φ

φ+ 1
(p− 1)

t−1∑
i=0

pi =
φ

φ+ 1
(p− 1)

(
pt − 1
p− 1

)
=

φ

φ+ 1
(pt − 1) < pt − 1.

Along with equation (3), this inequality implies that
∑rt−1
i=0 kip

i mod t = 1. Since
p - k, we conclude k = 1, as desired.

Proposition 12 implies the following result:

Corollary 13. Let q = pe be an odd prime power with:

1. p ≥ 7 and 1 < e = 2a3b5c for integers a, b, c ≥ 0, or
2. p ≥ 11 and 1 < e = 2a3b5c7d for integers a, b, c, d ≥ 0, or
3. p ≥ 13 and 1 < e = 2a3b5c7d11y for integers a, b, c, d, y ≥ 0.

Furthermore, suppose 1 ≤ k < q−1
2 . If G = Gq(xy, xky2k) has girth at least

eight and p - k, then k ≡ 1 (mod q − 1), and so k = 1.

Proof. We showed in the proof of Corollary 11 that when φ = 5, p3 = 7, and
that when φ = 7, p4 = 11. Therefore, Proposition 12 implies parts 1 and 2 of
this corollary.

We now prove part 3. When φ = 11, Corollary 11 implies that the base
p digits of k are at most p−1

12 for all p ≥ 13, p 6= 31. Therefore, Proposition
12 implies this result for those primes. We must account for the p = 31 case
separately.

Let q = 31e with 1 < e = 2a3b5c7d11y for integers a, b, c, d, y ≥ 0. Suppose
1 ≤ k < q−1

2 and let k =
∑N
i=0 ki31i. We proceed by induction on e. If

e ∈ {2, 3, 5, 7, 11}, then N < 11. Furthermore, all base 31 digits of k are at
most 3. Therefore,

1 ≤ k0 + ...+ kN ≤ 3(N + 1) ≤ 33.

Since it is also true that 1 ≡ k ≡ k0+...+kN (mod 30), this forces k0+...+kN =
1 or 31. If k0 + ... + kN = 1, then 31 - k implies k = 1, as desired. If instead
k0 + ...+ kN = 31, N < 11 allows only two possibilities:

1. N = 10, there exist distinct i, j such that ki = kj = 2, and kh = 3 for all
h 6= i, h 6= j. This case is impossible because by Lucas’ Theorem,(

2k
k

)
≡
(

6
3

)9(4
2

)2

≡ 9 6≡ 2 (mod 31),

which violates (κ1).
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2. N = 10, there exists i such that ki = 1, and kh = 3 for all h 6= i. This
case is impossible because by Lucas’ Theorem,(

2k
k

)
≡
(

6
3

)10(2
1

)
≡ 10 6≡ 2 (mod 31),

which again violates (κ1).

Therefore, k0 + ...+ kN = 1, and so k = 1.
Now, assume that the result holds for all e′ = 2a

′
3b
′
5c
′
7d
′
11y

′
with a′, b′,

c′, d′, y′ non-negative integers and 2 ≤ e′ < e. Define e = rt where r ∈
{2, 3, 5, 7, 11}. Then t = e

r = 2a
′′
3b
′′
5c
′′
7d
′′
11y

′′
for some non-negative integers

a′′, b′′, c′′, d′′, y′′. Since t|e, F31t is a proper subfield of F31e . Therefore, since G
has girth at least 8 over F31e , G must also have girth at least 8 over the subfield
F31t . Thus, our induction hypothesis states that k ≡ 1 (mod 31t − 1). This
implies that

1 ≡ k ≡
rt−1∑
i=0

ki31i mod t (mod 31t − 1). (4)

Furthermore,

rt−1∑
i=0

ki31i mod t ≤
rt−1∑
i=0

3 · 31i mod t ≤ 3r
t−1∑
i=0

31i ≤ 33
(

31t − 1
31− 1

)
=

33
30

(31t − 1).

Along with equation (4), this inequality implies that
∑rt−1
i=0 ki31i mod t = 1 or

31t. Assume to the contrary that
∑rt−1
i=0 ki31i mod t = 31t. Note that there

exists a smallest integer j ≥ 0 such that kj = 3. Indeed, if ki ≤ 2 for all
i = 0, 1, ..., rt− 1, then

31t =
rt−1∑
i=0

ki31i mod t ≤ 2r
t−1∑
i=0

31i ≤ 22
(

31t − 1
30

)
=

22
30

(31t − 1) < 31t − 1,

a contradiction. Now, (κ8) must be satisfied when p = 31 because Proposition 10
implies that k < q−1

8 for all p ≥ 11. To see this, we follow results of Proposition
10 as z increases:

• 0 ≤ ki ≤ p−1
4 (z = 2) and 1 ≤ k < q−1

4 (z = 3) for p ≥ 5

• 0 ≤ ki ≤ p−1
6 (z = 3) and 1 ≤ k < q−1

6 (z = 4) for p ≥ 7

• 0 ≤ ki ≤ p−1
8 (z = 4) and 1 ≤ k < q−1

8 (z = 5) for p ≥ 11

Thus,
16k = (16k0, ..., 16kj−1, 17, ...)31,
14k = (14k0, ..., 14kj−1, 11, ...)31,
12k = (12k0, ..., 12kj−1, 5, ...)31,
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10k = (10k0, ..., 10kj−1, 30, 10kj+1, ..., 10krt−1)31,
8k = (8k0, ..., 8kj−1, 24, 8kj+1, ..., 8krt−1)31, and so by Lucas’ Theorem,

0 ≡ 186

≡
(

16k
8k

)
− 8
(

14k
8k

)
+ 28

(
12k
8k

)
− 56

(
10k
8k

)
≡
(

16k0

8k0

)
· · ·
(

16kj−1

8kj−1

)(
17
24

)
· · · − 8

(
14k0

8k0

)
· · ·
(

14kj−1

8kj−1

)(
11
24

)
· · ·

+ 28
(

12k0

8k0

)
· · ·
(

12kj−1

8kj−1

)(
5
24

)
· · · − 56

(
10k
8k

)
≡ −56

(
10k
8k

)
(mod 31)

Therefore,
(
10k
8k

)
≡ 0 (mod 31), which is impossible by Lucas’ Theorem since

all base 31 digits of k are at most 3. Thus, we must have
∑rt−1
i=0 ki31i mod t = 1,

and therefore the desired result of k = 1.

Proof (of Theorem 4). The e = 1 case was addressed in the proof of Theorem
1b in [6]. Therefore, we need only consider e > 1. It was shown in [6] that
every monomial graph of girth at least eight is isomorphic to a graph G =
Gq(xy, xky2k). Proposition 12 shows that in fact G = Γ3(q), which proves part
1 of Theorem 4. Parts 2, 3, and 4 follow by using similar reasoning, except that
G = Γ3(q) is proven by parts 1, 2, and 3 of Corollary 13, respectively.

5. Concluding Remarks

It is of interest that some results in the previous section hold for additional k
under certain conditions. Specifically:

1. Part 1 of Corollary 13 and part 2 of Theorem 4 hold for p = 5 with
k < q−1

8 .
2. Part 2 of Corollary 13 and part 3 of Theorem 4 hold for p = 5 with
k < q−1

8 , and for p = 7 with k < q−1
12 .

3. Part 3 of Corollary 13 and part 4 of Theorem 4 hold for p = 7 with
k < q−1

12 , and for p = 11 with k < q−1
20 .

The possibility of removing the bound on k for each of these three cases is the
subject of ongoing research. Another avenue for improving Theorem 4 would
be to find a more explicit form for pz. However, the techniques in this paper
require certain primes to either be handled separately (as was done for p = 31 in
Corollary 13), or excluded. We are uncertain whether a more effective technique
exists.

We would also like to note that an alternate strategy for proving Conjecture
2 is to instead prove the following conjecture:
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Conjecture 14. [6] Let q be an odd prime power, 1 ≤ k ≤ q − 1, and p - k.
Then F = ((x + 1)2k − 1)xq−1−k − 2xq−1 ∈ Fq[x] is a permutation polynomial
of Fq if and only if k = 1.

Indeed, suppose Conjecture 14 is true. Then either k = pa and F is a
permutation polynomial, or k 6= pa and F is not a permutation polynomial. In
the first case, k = pa implies that Conjecture 2 follows from the isomorphism

Γ3(q)→ Gq(xy, xp
a

y2pa)

with (p1, p2, p3) 7→
(
p1, p2, p

pa

3

)
and [l1, l2, l3] 7→

[
l1, l2, l

pa

3

]
. In the second

case, the fact that F is not a permutation polynomial means that Gq(xy, xky2k)
contains a 6-cycle; so Conjecture 2 holds vacuously.

Furthermore, it was shown in [6] that if Gq(xy, xky2k) has girth at most
8, then G = ((x + 1)k − xk)xk = (x2 + x)k − x2k ∈ Fq[x] is a permutation
polynomial of Fq. Therefore, the above argument also holds when F is replaced
by G in Conjecture 14.
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[12] E. Lucas, Théorie des Fonctions Numériques Simplement Périodiques, American
Journal of Mathematics 2 (1878): 184-196, 197-240, 289-321.

[13] H. van Maldeghem, Generalized Quadrangles, Birkhäuser, Boston, 1998.
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