Arcs, Ovals, and Segre's Theorem

Brian Kronenthal Most recently updated on:

October 6, 2012

1 Preliminary Definitions and Results

Let π be a projective plane of order q.

Definition 1.1. A <u>k-arc</u> is a set of k points in π , no three collinear.

Proposition 1.2. Let K be a k-arc. Then $k \leq q+2$. Furthermore, if q is odd, then $k \leq q+1$.

Proof. Let K be a k-arc, $x \in K$. Since π has $q + 1$ lines through any point, there are exactly $q + 1$ lines containing x. Furthermore, since π has a unique line through any pair of points (x, y) with $y \in K \setminus \{x\}$. each of the $k-1$ pairs corresponds to a unique line of the plane (if two pairs corresponded to the same line, we would have 3 collinear points in K , a contradiction). Since the number of such lines cannot excceed the total number of lines in π that contain x, we conclude $k - 1 \leq q + 1$; thus, $k \leq q + 2$.

We will now prove the contrapositive of the second statement. To that end, suppose $k = q + 2$. Then equality holds in the above argument, and so every line L of π with $x \in L$ must also contain some $y \in K \setminus \{x\}$. Therefore, every line of π must contain either 0 or 2 points of K.

Now, choose a fixed point $z \notin K$. Since every pair in the set $S = \{(x, z)|x \in K\}$ determines a line, $|S| = q + 2$. As every line contains 0 or 2 points of K, every line intersecting K is represented by exactly two pairs of the form (x, z) , $x \in K$. Thus, there are $\frac{q+2}{2}$ lines through z that intersect K. This implies $2|(q-2)$, and so q is even. \Box

Definition 1.3. A $(q + 1)$ -arc is called an <u>oval</u>, while a $(q + 2)$ -arc (which can only exist in a plane of even order) is called a hyperoval.

We now explore some properties of ovals and hyperovals.

Proposition 1.4. Let \mathcal{O} be an oval. Then there is a unique tangent line to \mathcal{O} for every $x \in \mathcal{O}$.

Proof. Let $x \in \mathcal{O}$. Then for every $y \in \mathcal{O} \setminus \{x\}$, there is a unique line containing x, y, and no other element of $\mathcal O$ (if the line contained a third point of $\mathcal O$, this would produce the contradiction of 3 collinear points in O). But $|O \setminus \{x\}| = q$ implies that there are q secant lines through x. Since π has $q + 1$ lines through every point, there is exactly one line through x that remains unaccounted for. As this line is not a secant line, it must be a tangent line. \Box

Definition 1.5. A conic C in the projective plane $PG(2,q)$ is the set of projective points

$$
\{(x, y, z)|Q(x, y, z) = 0\},\tag{1}
$$

where $Q = Q(X, Y, Z) = aX^2 + bY^2 + cZ^2 + 2fYZ + 2gZX + 2hXY$ for some fixed $a, b, c, f, g, h \in \mathbb{F}_q$. Furthermore, we classify certain conics as follows.

1. A conic in a projective plane of odd order is degenerate if the matrix $M_Q =$ $\sqrt{ }$ \mathcal{L} a h g h b f $g \quad f \quad c$ \setminus has determinant 0.

- 2. [2] A conic is singular if there exists point $T \in \mathcal{C}$ such that $\frac{\partial Q}{\partial X}\Big|_T = \frac{\partial Q}{\partial Y}\Big|_T = \frac{\partial Q}{\partial Z}\Big|_T = 0$.
- 3. [2] A conic is reducible if $Q(x, y, z)$ can be factored into the product of two linear terms. This is equivalent to saying that C contains an entire line of $PG(2, q)$.
- 4. [1] A conic is <u>substitution-reducible</u> if there is a linear transformation¹ of the variables X, Y, and Z with non-singular matrix representation that reduces the number of variables in Q from three.

Note that if a conic does not meet these criteria, it is called non-degenerate, non-singular, irreducible, or substitution-irreducible, respectively. Furthermore, the matrix M_Q is significant because

$$
(X,Y,Z)M_Q\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = (X,Y,Z)\begin{pmatrix} a & h & g \\ h & b & f \\ g & f & c \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = Q.
$$

Proposition 1.6. Let C be a conic in $PG(2,q)$ with q odd. Then the following are equivalent:

- 1. C is degenerate
- 2. C is singular
- 3. C is reducible
- 4. C is substitution-reducible

Theorem 1.7. Every non-degenerate conic is a k-arc.

Proof. (adapted from [1]) Let C be a conic and L a line of $PG(2,q)$. We must show that $|C \cap L| \leq 2$.

We know² that any two points in $PG(2, q)$ may be mapped to any two points via a linear transformation with non-singular matrix representation. Since two points determine a unique line, there is a linear transformation that maps L to the line $z = 0$. Therefore, we may assume without loss of generality that L is $z=0.$

Now, suppose to the contrary that $a = b = h = 0$. Then $C = \{(x, y, z) | (2gx + 2fy + cz)z = 0\}$, where at least one of c, f, and g is non-zero; suppose without loss of generality that $g \neq 0$. Consider the linear transformation φ defined by $\varphi(x) = 2gx + 2fy + cz$, $\varphi(y) = y$, and $\varphi(z) = z$. This transformation has matrix $\sqrt{ }$ $2g$ $2f$ c \setminus

 \mathcal{L} 0 1 0 0 0 1 , which has determinant $2g \neq 0$. Therefore, this transformation is invertible. Furthermore,

$$
\varphi^{-1}(\mathcal{C}) = \{(x, y, z)|xz = 0\},\
$$

which contains only two variables. As φ^{-1} is a linear transformation with non-singular matrix representation, this contradicts the assumption that $\mathcal C$ is non-degenerate, and thus substitution-irreducible by Proposition 1.6. Thus, we conclude that at least one of a, b , and h is non-zero.

¹More specifically, this transformation is between degree one polynomials of x, y , and z .

²This is because the action of $PGL(V)$ on $P(V)$ (i.e. the points of the projective plane corresponding to an n-dimensional vector space V) is 2-transitive. To see this, let $\langle u_1 \rangle \neq \langle u_2 \rangle$ and $\langle v_1 \rangle \neq \langle v_2 \rangle$ be elements of $P(V)$. Since u_1 and u_2 are linearly independent, we may extend u_1, u_2 to a basis $\{u_1, u_2, u_3, ..., u_n\}$ of V. Similarly, the linear independence of v_1 and v_2 implies we may extend v_1, v_2 to a basis $\{v_1, v_2, v_3, ..., v_n\}$ of V. Since there is always a linear transformation $f \in GL(V)$ that maps one basis to another, $f(u_i) = v_i$ for all i; thus, $f(\langle u_1 \rangle) = \langle v_1 \rangle$ and $f(\langle u_2 \rangle) = \langle v_2 \rangle$, as desired, where $f \in PGL(V)$.

Assume first that $a \neq 0$. All points on the line $z = 0$ have form $(1, 0, 0)$ or $(x, 1, 0)$ for some x. Note that $(1,0,0) \notin \mathcal{C}$ because $a \neq 0$. Furthermore, $(x, 1, 0) \in \mathcal{C}$ if and only if $ax^2 + 2hx + b = 0$; since this is a quadratic equation in x, it has at most 2 solutions. Therefore, $|\mathcal{C} \cap L| \leq 2$.

Next, assume $b \neq 0$. Note that all points on the line $z = 0$ have form $(0, 1, 0)$ or $(1, y, 0)$ for some y, and that $(0, 1, 0) \notin \mathcal{C}$ because $b \neq 0$. Furthermore, $(1, y, 0) \in \mathcal{C}$ if and only if $by^2 + 2hy + a = 0$; since this is a quadratic equation in y, it has at most 2 solutions. Therefore, $|\mathcal{C} \cap L| \leq 2$.

Finally, if we assume $a = b = 0$ and $h \neq 0$, then any $(x, y, z) \in C \cap L$ satisfies $2hxy = 0$. Since $h \neq 0$, we know $x = 0$ or $y = 0$. As we are only considering points on the line $z = 0$, the only solutions are $(1, 0, 0)$ and $(0, 1, 0)$. Therefore, $|\mathcal{C} \cap L| = 2$.

Thus, for every line L of $PG(2, q)$, $|C \cap L| \leq 2$. Therefore, no three points of C are collinear, and so C is $a\ k$ -arc. \Box

In general, it can be inconvenient to prove a result for all non-degenerate conics in $PG(2, q)$. The next result is a powerful tool that allows one to consider a particular conic instead.

Proposition 1.8. Let q be odd. Every non-degenerate conic in $PG(2, q)$, is equivalent to the conic $XY-Z^2 =$ 0.

Proof. (adapted primarily from [7]) Let C be the conic as defined by (1). Let P be a point of C. Assume without loss of generality (via a non-singular linear transformation, if necessary) that $P = (1, 0, 0)$. Since $P \in \mathcal{C}$ implies $Q(1,0,0) = 0$, we know $a = 0$. Therefore,

$$
Q = bY^2 + cZ^2 + 2fYZ + 2gXZ + 2hXY.
$$

Now, note that any line through P has equation $\beta Y + \gamma Z = 0$, where $\beta, \gamma \in \mathbb{F}_q$ are not both 0. Let L be one such line, and let T be a point on L. Then³ $T = (t, \gamma, -\beta)$ for some $t \in \mathbb{F}_q$. Now, we know $T \in \mathcal{C}$ if and only if:

$$
Q(t, \gamma, -\beta) = b\gamma^2 + c\beta^2 - 2f\gamma\beta - 2gt\beta + 2ht\gamma = 0,
$$

or equivalently

$$
b\gamma^2 + c\beta^2 - 2f\beta\gamma + 2(h\gamma - g\beta)t = 0.
$$
\n(2)

We now consider two cases:

- 1. Assume there is no $\lambda \in \mathbb{F}_q$ such that $\beta = \lambda h$ and $\gamma = \lambda g$. Then⁴ $h\gamma g\beta \neq 0$; so (2) produces a unique solution for t. Therefore, every line $L : \beta y + \gamma z$ through P in this case contains a unique additional point on \mathcal{C} .
- 2. Assume that there exists $\lambda \in \mathbb{F}_q$ such that $\beta = \lambda h$ and $\gamma = \lambda g$. Then $h\gamma g\beta = 0$, and so $T \in \mathcal{C}$ if and only if

$$
Q(t, \gamma, -\beta) = Q(t, \lambda g, -\lambda h) = 0 \Longrightarrow bg^2 - 2fgh + ch^2 = 0.
$$
\n(3)

But recall that every point $T \in L$ (besides P) has form $(t, \gamma, -\beta)$, and is therefore on C by (3). This implies that C contains the entire line L , and so C is reducible; this contradicts the non-degeneracy of C. Thus, P is the only point of C on L in this case.

Therefore, we conclude that the $q + 1$ lines through P may be described as follows:

1. The line $hy + gz = 0$ (from the case 2 equalities $\beta = \lambda h$ and $\gamma = \lambda g$) contains only one point of C and is thus a tangent line.

³This is because we may assume without loss of generality that the y-coordinate of T is 1. Then T must satisfy $\beta + \gamma z = 0$, or equivalently $z = -\beta \gamma^{-1}$. So $T = (t', 1, -\beta \gamma^{-1}) = (t, \gamma, -\beta)$ for arbitrary $t' \in \mathbb{F}_q$ and $t = t'\gamma$.
⁴If $h\gamma - g\beta = 0$, then $h\gamma = g\beta$. If $g \neq 0$, then $\beta = (\gamma g^{-1})h$ and $\gamma = (\gamma g^{-1})g$. If instead $g = 0$, then either

implies the contradiction $\beta = \gamma = 0$) or $\gamma = 0$, in which case $\beta = \lambda h$ and $\gamma = 0 = \lambda g$ for some λ . Our statement follows by contrapositive, where $\lambda = \gamma g^{-1}$ in the $g \neq 0$ case.

Since $q \geq 2$, there are at least 3 lines through P. This means that there exist noncollinear points $P, Q, R \in \mathcal{C}$. Define L to be the tangent line to C at P, L' to be the tangent line to C at Q, and $S = L \cap L'$; see Figure 1. Now, since P, Q, R, S are in general position (i.e. no three of these points are collinear), we may assume

Figure 1: S is the intersection of the tangent lines to $\mathcal C$ at P and Q .

without loss of generality (via a linear transformation⁵) that $P = (1, 0, 0), Q = (0, 1, 0), S = (0, 0, 1)$, and $R = (1, 1, 1)$. Define $\tilde{b}, \tilde{c}, \tilde{d}, \tilde{e}$, and \tilde{f} to be the respective images of b, c, d, e, and f under this transformation. Now, we have $\widetilde{Q} = \widetilde{b}Y^2 + \widetilde{c}Z^2 + 2\widetilde{f}YZ + 2\widetilde{g}XZ + 2\widetilde{h}XY$. Since $Q = (0, 1, 0) \in \mathcal{C}$, we know $\widetilde{b} = 0$, and so

$$
\widetilde{Q} = \widetilde{c}Z^2 + 2\widetilde{f}YZ + 2\widetilde{g}XZ + 2\widetilde{h}XY.
$$

Let T denote an arbitrary point of C. Then by page 139 of [2], the tangent line to C at T has equation

$$
\left. \frac{\partial \widetilde{Q}}{\partial X} \right|_T X + \left. \frac{\partial \widetilde{Q}}{\partial Y} \right|_T Y + \left. \frac{\partial \widetilde{Q}}{\partial Z} \right|_T Z = 0,
$$

which for $T = (x_0, y_0, z_0)$ and $\tilde{Q} = \tilde{c}Z^2 + 2\tilde{f}YZ + 2\tilde{q}XZ + 2\tilde{h}XY$ is

$$
(2\widetilde{h}y_0 + 2\widetilde{g}z_0)X + (2\widetilde{h}x_0 + 2\widetilde{f}z_0)Y + (2\widetilde{g}x_0 + 2\widetilde{f}y_0 + 2\widetilde{c}z_0)Z = 0.
$$

Therefore, L (the tangent line to C at $P = (1, 0, 0)$) has equation

$$
L: hY + \widetilde{g}Z = 0
$$

and L' (the tangent line to C at $Q = (0, 1, 0)$) has equation

$$
L': \widetilde{h}X + \widetilde{f}Z = 0.
$$

Since $S = (0, 0, 1) = L \cap L'$, we know $\tilde{f} = 0$ and $\tilde{g} = 0$. This implies $\tilde{Q} = \tilde{c}Z^2 + 2\tilde{h}XY$. Since $R = (1, 1, 1) \in \mathcal{C}$, we know $\tilde{c} + 2\tilde{h} = 0$, and so $\tilde{c} = -2\tilde{h} \neq 0$ ($\tilde{c} = \tilde{h} = 0$ would produce the contradiction $\tilde{Q} = 0$). Therefore, C consists of all solutions to

$$
-2\widetilde{h}Z^2 + 2\widetilde{h}XY = 0,
$$

or equivalently to the desired equation

$$
XY - Z^2 = 0
$$

 \Box

because $\widetilde{h} \neq 0$.

⁵Let A, B, C be three noncollinear points, and let $D = aA + bB + cC$ for some scalars a, b, c. Define $f \in GL(2, q)$ such that $f(A) = a^{-1}(1,0,0), f(B) = b^{-1}(0,1,0),$ and $f(C) = c^{-1}(0,0,1)$. Then

$$
f(D) = f(aA + bB + cC) = af(A) + bf(B) + cf(C) = (1, 0, 0) + (0, 1, 0) + (0, 0, 1) = (1, 1, 1).
$$

Corollary 1.9. Let q be odd. Every non-degenerate conic in $PG(2,q)$ contains exactly $q + 1$ points.

Proof. By Proposition 1.8, we need only consider the conic $xy - z^2 = 0$. If $z \neq 0$, then there are $q - 1$ choices for z. Since $xy = z^2$, $z \neq 0$ implies $x \neq 0$ and $y \neq 0$. So there are $q-1$ choices for x, and choosing x and z uniquely determines y. Thus, this case produces $(q-1)^2$ points (x, y, z) .

Alternatively, if $z = 0$, then $x = 0$ or $y = 0$. If $x = 0$, then y is unrestricted and there are thus q choices. Similarly, there are q choices for x if $y = 0$. This case therefore produces $2q - 1$ points, where we subtract one because we have counted the point $(0, 0, 0)$ twice.

Therefore, we have a total of $(q-1)^2 + 2q-1 = q^2$ triples. But since we are in projective space, $(0, 0, 0)$ is not an option and we must divide by $q-1$ to account for the fact that (x, y, z) and $\lambda(x, y, z)$ are equivalent points for all $\lambda \in \mathbb{F}_q^*$. This yields a total of $\frac{q^2-1}{q-1} = q+1$ points on a non-degenerate conic. \Box

Now, we will consider an example that illustrates the power of Proposition 1.8.

Example 1.10. These results yield a simple way to count the number of solutions $(x, y, z) \in PG(2, q)$ to the equation $x^2 + y^2 = z^2$. Since $x^2 + y^2 = z^2$ is a non-degenerate conic (note that if $Q = X^2 + Y^2 - Z^2$, then $\det(M_Q) = -1 \neq 0$, it is equivalent to $xy = z^2$ by Proposition 1.8. By Corollary 1.9, there are precisely $q + 1$ solutions.

Corollary 1.11. Every non-degenerate conic in $PG(2, q)$ (q odd) is an oval.

Proof. Let C be a non-degenerate conic. Then C is a k-arc by Theorem 1.7 and has $q+1$ points by Corollary 1.9. Therefore, $\mathcal C$ is an oval. П

We now shift our attention to properties of hyperovals. Recall that an arc in a projective plane of order q can only have size $q + 2$ for q even; the remainder of this section will therefore focus exclusively on such planes.

Proposition 1.12. Let H be a hyperoval in a projective plane π of order q even. Choose arbitrary $u \in H$, and define the oval $\mathcal{O} = \mathcal{H} \setminus \{u\}$. Label the points of \mathcal{H} by $\{x_1, x_2, ..., x_{q+1}, u\}$, and let L_i denote the unique tangent line to O through x_i . Then the lines $L_1, L_2, ..., L_{q+1}$ meet at the point u.

Proof. Consider $x_1 \in \mathcal{O}$. Then we classify all lines containing x_1 :

- 1. There is a unique line through x_1 and y for every $y \in \mathcal{O}$; this accounts for q lines secant to \mathcal{O} . Note that none of these lines contain u, as otherwise three points of $\mathcal O$ would be collinear.
- 2. There is a unique line L_1 through x_1 and u. This accounts for one line tangent to \mathcal{O} .

We have thereby accounted for all lines of π containing x_1 . Note that the unique tangent line to $\mathcal O$ containing x_1 (i.e. L_1) contains u. Repeat this process for every x_i , $2 \le i \le n+1$. This shows every L_i contains u, as claimed. \Box

Definition 1.13. Let π be a projective plane of order q even. The nucleus of an oval \mathcal{O} in π is the intersection of the $q + 1$ tangent lines to $\mathcal O$ (labeled u in the previous proposition).

Definition 1.14. A hyperoval is called regular if its points consist of the $q + 1$ points of an oval \mathcal{O} and the nucleus of O. Otherwise, a hyperoval is called irregular.

Example 1.15. Consider the Fano Plane (i.e. $PG(2, 2)$) as pictured in Figure 2. Then $\{A, C, E\}$ forms an oval with nucleus G. Therefore, $\{A, C, E, G\}$ is a regular hyperoval.

Figure 2: The Fano Plane

Example 1.16. All hyperovals in $PG(2, 2)$, $PG(2, 4)$, and $PG(2, 8)$ are regular. However, irregular hyperovals exist in $PG(2, 2^e)$ for all $e \geq 4$; for justification of these facts, see Lemma 8.21, Corollary 8.32, and Theorem 8.37 of [4]. For example, Lunelli and Sce proved [6] that if $\eta \in \mathbb{F}_{16}$ such that $\eta^4 = \eta + 1$, then

$$
\{(1,t,\eta^{12}t^2+\eta^{10}t^4+\eta^3t^8+\eta^{12}t^{10}+\eta^9t^{12}+\eta^4t^{14}|t\in \mathbb{F}_{16}\cup\{(0,1,0),(0,0,1)\}\}
$$

is an irregular hyperoval in $PG(2, 16)$. Furthermore, Hall proved [3] (using a computer), and later O'Keefe and Penttila proved [8] (without a computer), that every irregular hyperoval of $PG(2, 16)$ is equivalent to the Lunelli-Sce hyperoval. For additional results about hyperovals, see e.g. [4] or Penttila [9].

Since every conic is an oval (Corollary 1.11), we could define the nucleus of a conic using the corresponding definition for the nucleus of an oval (Definition 1.13). However, the coordinates of the nucleus of a conic in a projective plane of even order may be determined precisely.

Proposition 1.17. Suppose C is a conic in $PG(2,q)$, $q = 2^e$ for some $e \in \mathbb{N}$, defined by

$$
Q = aX^2 + bY^2 + cZ^2 + fYZ + gXZ + hXY = 0.
$$

Then the nucleus of C is (f, g, h) .

Proof. (Uses [2], in part)

Calculating partial derivatives of Q, and remembering that we are in characteristic 2, we have:

$$
\frac{\partial Q}{\partial X} = gZ + hY,
$$

\n
$$
\frac{\partial Q}{\partial Y} = fZ + hX, \text{ and}
$$

\n
$$
\frac{\partial Q}{\partial Z} = fY + gX.
$$

Then the tangent line to this conic at the point $T = (x_0, y_0, z_0)$ is:

$$
0 = \frac{\partial Q}{\partial X}\bigg|_{T} X + \frac{\partial Q}{\partial Y}\bigg|_{T} Y + \frac{\partial Q}{\partial Z}\bigg|_{T} Z
$$

$$
0 = (gz_0 + hy_0)X + (fz_0 + hx_0)Y + (fy_0 + gx_0)Z,
$$
 (4)

To show that (f, g, h) lies on every tangent line, we need only show that (f, g, h) is a solution to (4) for any (x_0, y_0, z_0) . This follows immediately, as

$$
(gz0 + hy0)f + (fz0 + hx0)g + (fy0 + gx0)h = 2fgz0 + 2fhy0 + 2ghx0 = 0.
$$

Therefore, (f, g, h) is the nucleus of C (note that we can say "the" nucleus because in a projective plane, two lines intersect in a unique point; so if all tangent lines intersect at (f, g, h) , this is the only place they can intersect). \Box

2 Segre's Theorem

The purpose of this section is to prove Segre's Theorem, which is Theorem 2.4 below. We start with some preliminary results. Let $\mathcal O$ be an oval in $PG(2, q)$, q an odd prime power. We will need a lemma to prove Proposition 2.3.

Lemma 2.1. If q is an odd prime power, then

$$
\prod_{a \in \mathbb{F}_q^*} a = -1
$$

We will present two proofs of this result.

Proof 1. Let $a \in \mathbb{F}_q^*$. Then

$$
a = a^{-1} \Leftrightarrow a^2 = 1 \Leftrightarrow a = \pm 1.
$$

Therefore,

$$
\prod_{a\in \mathbb F_q^*} a = \left(a_1a_1^{-1}\right)\left(a_2a_2^{-1}\right)\dots\left(a_{\frac{q-3}{2}}a_{\frac{q-3}{2}}^{-1}\right)(1)(-1) = (1)(1)\dots(1)(1)(-1) = -1
$$

Proof 2. We know that $a \in \mathbb{F}_q^*$ if and only if a is a root of $x^{q-1} - 1$. Therefore,

$$
x^{q-1}-1=\prod_{a\in \mathbb{F}_q^*} (x-a)=x^{q-1}-\left(\sum a\right)s^{q-2}+\left(\sum a_ia_j\right)x^{q-3}-\ldots-\left(\sum a_{i_1}...a_{i_{q-2}}\right)x+a_1...a_{q-1},
$$

with the second equality holding by Viete's Theorem. Comparing corresponding terms, we find that $a_1...a_{q-1} = -1.$ \Box

Definition 2.2. A triangle with its vertices on $\mathcal O$ is called an inscribed triangle of $\mathcal O$. A triangle whose sides are tangent to $\mathcal O$ is called a circumscribed triangle of $\mathcal O$. If the sides of a circumscribed triangle are tangent to $\mathcal O$ at the vertices of an inscribed triangle, these two triangles may be called mates.

Proposition 2.3. [5] Every inscribed triangle of \mathcal{O} and its mate are in perspective.

Proof. Without loss of generality, suppose that the inscribed triangle is the triangle of reference (i.e. has vertices $A_1 = (1, 0, 0), A_2 = (0, 1, 0),$ and $A_3 = (0, 0, 1)$. For $i = 1, 2, 3$, define a_i to be the tangent line to \mathcal{O} at A_i . Then a_1 has equation $y = k_1z$, a_2 has equation $z = k_2x$, and a_3 has equation $x = k_3y$ for some $k_1, k_2, k_3 \in \mathbb{F}^*$. See Figure 3.

Figure 3: The triangle of reference and its mate.

 \Box

Choose arbitrary $B = (c_1, c_2, c_3) \in \mathcal{O} \setminus \{A_1, A_2, A_3\}$. If we assume to the contrary that $c_1 = 0$, then the line containing B and A_3 is $x = 0$. However, this would imply that B, A_2 , and A_3 are all on the line $x = 0$, violating the requirement that no three points on an oval are collinear. Therefore, we conclude $c_1 \neq 0$. By similar reasoning, $c_2 \neq 0$ and $c_3 \neq 0$. Now, note that:

- 1. The line containing A_1 and B has equation $y = h_1 z$, where $h_1 = c_2 c_3^{-1}$.
- 2. The line containing A_2 and B has equation $z = h_2 x$, where $h_1 = c_3 c_1^{-1}$.
- 3. The line containing A_3 and B has equation $x = h_3y$, where $h_3 = c_1c_2^{-1}$.

In addition, note that $h_1h_2h_3 = c_2c_3^{-1}c_3c_1^{-1}c_1c_2^{-1} = 1$. Therefore, using \overline{XY} to denote the line containing the points X and Y , we have the following result:

Conclusion: Let $A_1A_2A_3$ be the triangle of reference and $B \in \mathcal{O} \setminus \{A_1, A_2, A_3\}$. Then if the lines $\overline{A_1B}, \overline{A_2B}$, and $\overline{A_3B}$ have equations $y = h_1z$, $z = h_2x$, and $x = h_3y$ respectively, then $h_1h_2h_3 = 1$.

Claim: $k_1k_2k_3 = -1$, where we recall that $y = k_1z$, $z = k_2x$, and $x = k_3y$ are the tangent lines to $\mathcal O$ at A_1, A_2 , and A_3 respectively.

<u>Proof</u>: (adapted from Step 4 on page 140 of [1]) Label the $q + 1$ points of $\mathcal O$ by $A_1, A_2, A_3, p_4, p_5, ..., p_{q+1}$. Note that $L := \overline{A_2 A_3}$ must be the line $x = 0$. Consider the point $A_1 = (1, 0, 0)$. It lies on:

- 1. The tangent at A_1 , which has equation $y = k_1 z$ and intersects L at $(0, k_1, 1)$.
- 2. The secant containing A_1 and A_2 .
- 3. The secant containing A_1 and A_3 .
- 4. The secants containing A_1 and p_i , $4 \leq i \leq q+1$, which intersect L at $(0, k_i, 1)$ with $k_i \in \mathbb{F}_q^*$.

Note that since no two of these lines will intersect L at the same place (otherwise, the lines would be the same, forcing 3 collinear points of \mathcal{O} , the k_i (i = 1 or $4 \le i \le q+1$) are distinct. Therefore,

$$
k_1 \prod_{i=4}^{q+1} k_i = \prod_{x \in \mathbb{F}_q^*} x = -1,
$$

with the last equality following from Lemma 2.1.

Now, we switch our perspective from lines containing A_1 to lines containing A_2 . Let L' denote the line containing A_1 and A_3 , and proceed as above. We find

$$
k_2 \prod_{i=4}^{q+1} k'_i = \prod_{x \in \mathbb{F}_q^*} x = -1.
$$

Finally, we use a similar approach on lines containing A_3 . Letting L'' be the line containing A_1 and A_2 , we have $+1$

$$
k_3 \prod_{i=4}^{q+1} k_i'' = \prod_{x \in \mathbb{F}_q^*} x = -1.
$$

Multiplying these three results together yields:

$$
-1 = (-1)^3 = \left(k_1 \prod_{i=4}^{q+1} k_i\right) \left(k_2 \prod_{i=4}^{q+1} k'_i\right) \left(k_3 \prod_{i=4}^{q+1} k''_i\right)
$$

\n
$$
= k_1 k_2 k_3 \prod_{i=4}^{q+1} k_i k'_i k''_i
$$

\n
$$
= k_1 k_2 k_3 \prod_{i=4}^{q+1} 1
$$

\n(This is because the lines $y = k_i z$, $z = k'_i x$, and $x = k''_i y$ all intersect O at p_i .
\nTherefore, $k_i k'_i k''_i = 1$ by above conclusion.)
\n
$$
= k_1 k_2 k_3
$$

Thus, $k_1k_2k_3 = -1$, as claimed.

 \diamond

Now, let $a \cap b$ denote the intersection of the lines a and b. Then define the points $A'_1 := a_2 \cap a_3 = (k_3, 1, k_2 k_3)$, $A'_2 := a_1 \cap a_3 = (k_1 k_3, k_1, 1)$, and $A_3 := a_1 \cap a_2 = (1, k_1 k_2, k_2)$. Futhermore, we note that $\overline{A_1 A'_1}$ has equation $z = k_2 k_3 y$, $\overline{A_2 A_2'}$ has equation $x = k_1 k_3 z$, and $\overline{A_3 A_3'}$ has equation $y = k_1 k_2 x$. Each of these three lines contains the point $K = (1, k_1k_2, -k_2)$. Therefore, the triangles $A_1A_2A_3$ and $A'_1A'_2A'_3$ are in perspective with respect to the point K , as in Figure 4. \Box

Figure 4: Triangles in perspective

Theorem 2.4 (Segre's Theorem). Let q be an odd prime power. Then every oval in $PG(2,q)$ is a conic.

Proof. (adapted primarily from [5]) Let $\mathcal O$ be an oval in $PG(2, q)$, where q is an odd prime power. Recall from the proof of Proposition 2.3 that $K = (1, k_1 k_2, -k_2)$ is the point of concurrency for the lines $\overline{A_1 A'_1}, \overline{A_2 A'_2},$ and $\overline{A_3A'_3}$. Assume without loss of generality that $k_1 = k_2 = k_3 = -1$, and so $K = (1, 1, 1)$.

Choose $B = (c_1, c_2, c_3) \in \mathcal{O} \setminus \{A_1, A_2, A_3\}$, and let b denote the tangent line $b_1x + b_2y + b_3z = 0$ to $\mathcal O$ at B. Since B is on b , we know that

$$
b_1c_1 + b_2c_2 + b_3c_3 = 0.\t\t(5)
$$

By Proposition 2.3, the triangle BA_2A_3 and the triangle with sides b, a_2 , and a_3 are in perspective.

Let point P denote the intersection of the lines $x = 0$ and b; it is therefore the unique point determined by the equation $b_2y + b_3z = 0$, namely $P = (0, b_3, -b_2)$. Similarly, let point Q denote the intersection of the line $a_2: z = -x$ and the line $\overline{BA_3}$. $\overline{BA_3}$ has equation $c_2x - c_1y = 0$, and intersects $z = -x$ at the point $Q = (c_1, c_2, -c_1)$. Finally, we let R denote the intersection of the line $a_3 : x = -y$ and the line BA_2 . BA_2 has equation $c_3x - c_1z = 0$, and intersects $x = -y$ at the point $R = (c_1, -c_1, c_3)$. See Figure 5.

Since the points $P = (0, b_3, -b_2), Q = (c_1, c_2, -c_1),$ and $R = (c_1, -c_1, c_3)$ are collinear by Desargue's Theorem, we know that:

Figure 5: Triangles in perspective implies colllinear points

$$
0 = \det \begin{pmatrix} 0 & b_3 & -b_2 \\ c_1 & c_2 & -c_1 \\ c_1 & -c_1 & c_3 \end{pmatrix}
$$

= $-b_3(c_1c_3 + c_1^2) - b_2(-c_1^2 - c_1c_2)$
= $-b_3c_1c_3 - b_3c_1^2 + b_2c_1^2 + b_2c_1c_2$

This means that $b_2c_1^2 + b_2c_1c_2 = b_3c_1c_3 + b_3c_1^2$, and so

$$
b_2(c_1 + c_2) = b_3(c_1 + c_3). \tag{6}
$$

If we similarly apply Desargue's Theorem to the triangles BA_1A_3 and BA_1A_2 we find that

$$
b_3(c_2 + c_3) = b_1(c_1 + c_2) \text{ and } b_1(c_1 + c_3) = b_2(c_2 + c_3). \tag{7}
$$

Now, we have:

$$
(b_1, b_2, b_3) = (c_1 + c_2)(b_1, b_2, b_3)
$$

\n
$$
= (b_1(c_1 + c_2), b_2(c_1 + c_2), b_3(c_1 + c_2))
$$

\n
$$
= (b_3(c_2 + c_3), b_3(c_1 + c_3), b_3(c_1 + c_2))
$$
 (by (6) and (7))
\n
$$
= b_3(c_2 + c_3, c_1 + c_3, c_1 + c_2)
$$

\n
$$
= (c_2 + c_3, c_1 + c_3, c_1 + c_2).
$$
 (8)

Plugging (8) into (5) yields:

$$
0 = (c_2 + c_3)c_1 + (c_1 + c_3)c_2 + (c_1 + c_2)c_3
$$

= 2(c_1c_2 + c_2c_3 + c_1c_3)

(9)

and since q is odd,

$$
c_1c_2 + c_2c_3 + c_1c_3 = 0 \tag{10}
$$

for all points of the oval (besides A_1, A_2 and A_3). Now, consider the conic

$$
\mathcal{C} := \{(x, y, z)|xy + yz + xz = 0\}.
$$

Clearly, $A_1, A_2, A_3 \in \mathcal{C}$. Furthermore, (10) proves that each of the $q-2$ points $(c_1, c_2, c_3) \in \mathcal{O} \setminus \{A_1, A_2, A_3\}$ lies on C. Therefore, C contains the $q + 1$ points of O. But Corollary 1.9 showed that C contains exactly $q + 1$ points. Therefore, $\mathcal{O} = \mathcal{C}$, and thus \mathcal{O} is a conic. \Box

References

- [1] Peter J. Cameron. Combinatorics: topics, techniques, algorithms. Cambridge University Press, Cambridge, 1994.
- [2] Rey Casse. Projective geometry: an introduction. Oxford University Press, Oxford, 2006.
- [3] Marshall Hall, Jr. Ovals in the Desarguesian plane of order 16. Ann. Mat. Pura Appl. (4), 102:159–176, 1975.
- [4] J. W. P. Hirschfeld. Projective geometries over finite fields. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1998.
- [5] Daniel R. Hughes and Fred C. Piper. Projective planes. Springer-Verlag, New York, 1973. Graduate Texts in Mathematics, Vol. 6.
- [6] L. Lunelli and M. Sce. k-archi completi nei piani proiettivi desarguesiani di rango 8 e 16. Centro di Calcoli Numerici, Politecnico di Milano, Milan, 1958.
- [7] Eric Moorhouse. Incidence geometry. August 2007.
- [8] Christine M. O'Keefe and Tim Penttila. Hyperovals in PG(2, 16). European J. Combin., 12(1):51–59, 1991.
- [9] Tim Penttila. Configurations of ovals. J. Geom., 76(1-2):233–255, 2003. Combinatorics, 2002 (Maratea).