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1 Preliminary Definitions and Results

Let π be a projective plane of order q.

Definition 1.1. A k-arc is a set of k points in π, no three collinear.

Proposition 1.2. Let K be a k-arc. Then k ≤ q + 2. Furthermore, if q is odd, then k ≤ q + 1.

Proof. Let K be a k-arc, x ∈ K. Since π has q + 1 lines through any point, there are exactly q + 1 lines
containing x. Furthermore, since π has a unique line through any pair of points (x, y) with y ∈ K \ {x},
each of the k− 1 pairs corresponds to a unique line of the plane (if two pairs corresponded to the same line,
we would have 3 collinear points in K, a contradiction). Since the number of such lines cannot excceed the
total number of lines in π that contain x, we conclude k − 1 ≤ q + 1; thus, k ≤ q + 2.

We will now prove the contrapositive of the second statement. To that end, suppose k = q + 2. Then
equality holds in the above argument, and so every line L of π with x ∈ L must also contain some y ∈ K\{x}.
Therefore, every line of π must contain either 0 or 2 points of K.

Now, choose a fixed point z /∈ K. Since every pair in the set S = {(x, z)|x ∈ K} determines a line,
|S| = q+ 2. As every line contains 0 or 2 points of K, every line intersecting K is represented by exactly two
pairs of the form (x, z), x ∈ K. Thus, there are q+2

2 lines through z that intersect K. This implies 2|(q− 2),
and so q is even.

Definition 1.3. A (q+ 1)-arc is called an oval, while a (q+ 2)-arc (which can only exist in a plane of even
order) is called a hyperoval.

We now explore some properties of ovals and hyperovals.

Proposition 1.4. Let O be an oval. Then there is a unique tangent line to O for every x ∈ O.

Proof. Let x ∈ O. Then for every y ∈ O \ {x}, there is a unique line containing x, y, and no other element
of O (if the line contained a third point of O, this would produce the contradiction of 3 collinear points in
O). But |O \ {x}| = q implies that there are q secant lines through x. Since π has q + 1 lines through every
point, there is exactly one line through x that remains unaccounted for. As this line is not a secant line, it
must be a tangent line.

Definition 1.5. A conic C in the projective plane PG(2, q) is the set of projective points

{(x, y, z)|Q(x, y, z) = 0}, (1)

where Q = Q(X,Y, Z) = aX2 + bY 2 + cZ2 + 2fY Z + 2gZX + 2hXY for some fixed a, b, c, f, g, h ∈ Fq.
Furthermore, we classify certain conics as follows.
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1. A conic in a projective plane of odd order is degenerate if the matrix MQ =

a h g
h b f
g f c

 has determi-

nant 0.

2. [2] A conic is singular if there exists point T ∈ C such that ∂Q
∂X

∣∣∣
T

= ∂Q
∂Y

∣∣∣
T

= ∂Q
∂Z

∣∣∣
T

= 0.

3. [2] A conic is reducible if Q(x, y, z) can be factored into the product of two linear terms. This is
equivalent to saying that C contains an entire line of PG(2, q).

4. [1] A conic is substitution-reducible if there is a linear transformation1 of the variables X,Y, and Z
with non-singular matrix representation that reduces the number of variables in Q from three.

Note that if a conic does not meet these criteria, it is called non-degenerate, non-singular, irreducible, or
substitution-irreducible, respectively. Furthermore, the matrix MQ is significant because

(X,Y, Z)MQ

XY
Z

 = (X,Y, Z)

a h g
h b f
g f c

XY
Z

 = Q.

Proposition 1.6. Let C be a conic in PG(2, q) with q odd. Then the following are equivalent:

1. C is degenerate

2. C is singular

3. C is reducible

4. C is substitution-reducible

Theorem 1.7. Every non-degenerate conic is a k-arc.

Proof. (adapted from [1]) Let C be a conic and L a line of PG(2, q). We must show that |C ∩ L| ≤ 2.
We know2 that any two points in PG(2, q) may be mapped to any two points via a linear transformation

with non-singular matrix representation. Since two points determine a unique line, there is a linear trans-
formation that maps L to the line z = 0. Therefore, we may assume without loss of generality that L is
z = 0.

Now, suppose to the contrary that a = b = h = 0. Then C = {(x, y, z)|(2gx + 2fy + cz)z = 0}, where
at least one of c, f, and g is non-zero; suppose without loss of generality that g 6= 0. Consider the linear
transformation ϕ defined by ϕ(x) = 2gx+2fy+cz, ϕ(y) = y, and ϕ(z) = z. This transformation has matrix2g 2f c

0 1 0
0 0 1

, which has determinant 2g 6= 0. Therefore, this transformation is invertible. Furthermore,

ϕ−1(C) = {(x, y, z)|xz = 0},

which contains only two variables. As ϕ−1 is a linear transformation with non-singular matrix representation,
this contradicts the assumption that C is non-degenerate, and thus substitution-irreducible by Proposition
1.6. Thus, we conclude that at least one of a, b, and h is non-zero.

1More specifically, this transformation is between degree one polynomials of x, y, and z.
2This is because the action of PGL(V ) on P (V ) (i.e. the points of the projective plane corresponding to an n-dimensional

vector space V ) is 2-transitive. To see this, let 〈u1〉 6= 〈u2〉 and 〈v1〉 6= 〈v2〉 be elements of P (V ). Since u1 and u2 are linearly
independent, we may extend u1, u2 to a basis {u1, u2, u3, ..., un} of V . Similarly, the linear independence of v1 and v2 implies
we may extend v1, v2 to a basis {v1, v2, v3, ..., vn} of V . Since there is always a linear transformation f ∈ GL(V ) that maps
one basis to another, f(ui) = vi for all i; thus, f(〈u1〉) = 〈v1〉 and f(〈u2〉) = 〈v2〉, as desired, where f ∈ PGL(V ).

2



Assume first that a 6= 0. All points on the line z = 0 have form (1, 0, 0) or (x, 1, 0) for some x. Note
that (1, 0, 0) /∈ C because a 6= 0. Furthermore, (x, 1, 0) ∈ C if and only if ax2 + 2hx + b = 0; since this is a
quadratic equation in x, it has at most 2 solutions. Therefore, |C ∩ L| ≤ 2.

Next, assume b 6= 0. Note that all points on the line z = 0 have form (0, 1, 0) or (1, y, 0) for some y, and
that (0, 1, 0) /∈ C because b 6= 0. Furthermore, (1, y, 0) ∈ C if and only if by2 + 2hy + a = 0; since this is a
quadratic equation in y, it has at most 2 solutions. Therefore, |C ∩ L| ≤ 2.

Finally, if we assume a = b = 0 and h 6= 0, then any (x, y, z) ∈ C ∩ L satisfies 2hxy = 0. Since h 6= 0,
we know x = 0 or y = 0. As we are only considering points on the line z = 0, the only solutions are (1, 0, 0)
and (0, 1, 0). Therefore, |C ∩ L| = 2.

Thus, for every line L of PG(2, q), |C ∩ L| ≤ 2. Therefore, no three points of C are collinear, and so C is
a k-arc.

In general, it can be inconvenient to prove a result for all non-degenerate conics in PG(2, q). The next
result is a powerful tool that allows one to consider a particular conic instead.

Proposition 1.8. Let q be odd. Every non-degenerate conic in PG(2, q), is equivalent to the conic XY−Z2 =
0.

Proof. (adapted primarily from [7]) Let C be the conic as defined by (1). Let P be a point of C. Assume
without loss of generality (via a non-singular linear transformation, if necessary) that P = (1, 0, 0). Since
P ∈ C implies Q(1, 0, 0) = 0, we know a = 0. Therefore,

Q = bY 2 + cZ2 + 2fY Z + 2gXZ + 2hXY.

Now, note that any line through P has equation βY + γZ = 0, where β, γ ∈ Fq are not both 0. Let L be
one such line, and let T be a point on L. Then3 T = (t, γ,−β) for some t ∈ Fq. Now, we know T ∈ C if and
only if:

Q(t, γ,−β) = bγ2 + cβ2 − 2fγβ − 2gtβ + 2htγ = 0,

or equivalently
bγ2 + cβ2 − 2fβγ + 2(hγ − gβ)t = 0. (2)

We now consider two cases:

1. Assume there is no λ ∈ Fq such that β = λh and γ = λg. Then4 hγ− gβ 6= 0; so (2) produces a unique
solution for t. Therefore, every line L : βy + γz through P in this case contains a unique additional
point on C.

2. Assume that there exists λ ∈ Fq such that β = λh and γ = λg. Then hγ − gβ = 0, and so T ∈ C if
and only if

Q(t, γ,−β) = Q(t, λg,−λh) = 0 =⇒ bg2 − 2fgh+ ch2 = 0. (3)

But recall that every point T ∈ L (besides P ) has form (t, γ,−β), and is therefore on C by (3). This
implies that C contains the entire line L, and so C is reducible; this contradicts the non-degeneracy of
C. Thus, P is the only point of C on L in this case.

Therefore, we conclude that the q + 1 lines through P may be described as follows:

1. The line hy + gz = 0 (from the case 2 equalities β = λh and γ = λg) contains only one point of C and
is thus a tangent line.

3This is because we may assume without loss of generality that the y-coordinate of T is 1. Then T must satisfy β + γz = 0,
or equivalently z = −βγ−1. So T = (t′, 1,−βγ−1) = (t, γ,−β) for arbitrary t′ ∈ Fq and t = t′γ.

4If hγ − gβ = 0, then hγ = gβ. If g 6= 0, then β = (γg−1)h and γ = (γg−1)g. If instead g = 0, then either h = 0 (which
implies the contradiction β = γ = 0) or γ = 0, in which case β = λh and γ = 0 = λg for some λ. Our statement follows by
contrapositive, where λ = γg−1 in the g 6= 0 case.
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2. The other q lines through P (from case 1) are secant lines to C.

Since q ≥ 2, there are at least 3 lines through P . This means that there exist noncollinear points P,Q,R ∈ C.
Define L to be the tangent line to C at P , L′ to be the tangent line to C at Q, and S = L ∩ L′; see Figure
1. Now, since P,Q,R, S are in general position (i.e. no three of these points are collinear), we may assume

Figure 1: S is the intersection of the tangent lines to C at P and Q.

without loss of generality (via a linear transformation5) that P = (1, 0, 0), Q = (0, 1, 0), S = (0, 0, 1), and

R = (1, 1, 1). Define b̃, c̃, d̃, ẽ, and f̃ to be the respective images of b, c, d, e, and f under this transformation.

Now, we have Q̃ = b̃Y 2 + c̃Z2 + 2f̃Y Z + 2g̃XZ + 2h̃XY . Since Q = (0, 1, 0) ∈ C, we know b̃ = 0, and so

Q̃ = c̃Z2 + 2f̃Y Z + 2g̃XZ + 2h̃XY.

Let T denote an arbitrary point of C. Then by page 139 of [2], the tangent line to C at T has equation

∂Q̃

∂X

∣∣∣∣∣
T

X +
∂Q̃

∂Y

∣∣∣∣∣
T

Y +
∂Q̃

∂Z

∣∣∣∣∣
T

Z = 0,

which for T = (x0, y0, z0) and Q̃ = c̃Z2 + 2f̃Y Z + 2g̃XZ + 2h̃XY is

(2h̃y0 + 2g̃z0)X + (2h̃x0 + 2f̃ z0)Y + (2g̃x0 + 2f̃y0 + 2c̃z0)Z = 0.

Therefore, L (the tangent line to C at P = (1, 0, 0)) has equation

L : h̃Y + g̃Z = 0

and L′ (the tangent line to C at Q = (0, 1, 0)) has equation

L′ : h̃X + f̃Z = 0.

Since S = (0, 0, 1) = L∩L′, we know f̃ = 0 and g̃ = 0. This implies Q̃ = c̃Z2+2h̃XY . Since R = (1, 1, 1) ∈ C,
we know c̃+ 2h̃ = 0, and so c̃ = −2h̃ 6= 0 (c̃ = h̃ = 0 would produce the contradiction Q̃ = 0). Therefore, C
consists of all solutions to

−2h̃Z2 + 2h̃XY = 0,

or equivalently to the desired equation
XY − Z2 = 0

because h̃ 6= 0.

5Let A,B,C be three noncollinear points, and let D = aA+ bB + cC for some scalars a, b, c. Define f ∈ GL(2, q) such that
f(A) = a−1(1, 0, 0), f(B) = b−1(0, 1, 0), and f(C) = c−1(0, 0, 1). Then

f(D) = f(aA+ bB + cC) = af(A) + bf(B) + cf(C) = (1, 0, 0) + (0, 1, 0) + (0, 0, 1) = (1, 1, 1).
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Corollary 1.9. Let q be odd. Every non-degenerate conic in PG(2, q) contains exactly q + 1 points.

Proof. By Proposition 1.8, we need only consider the conic xy − z2 = 0. If z 6= 0, then there are q − 1
choices for z. Since xy = z2, z 6= 0 implies x 6= 0 and y 6= 0. So there are q − 1 choices for x, and choosing
x and z uniquely determines y. Thus, this case produces (q − 1)2 points (x, y, z).

Alternatively, if z = 0, then x = 0 or y = 0. If x = 0, then y is unrestricted and there are thus q choices.
Similarly, there are q choices for x if y = 0. This case therefore produces 2q − 1 points, where we subtract
one because we have counted the point (0, 0, 0) twice.

Therefore, we have a total of (q−1)2 +2q−1 = q2 triples. But since we are in projective space, (0, 0, 0) is
not an option and we must divide by q − 1 to account for the fact that (x, y, z) and λ(x, y, z) are equivalent

points for all λ ∈ F∗q . This yields a total of q2−1
q−1 = q + 1 points on a non-degenerate conic.

Now, we will consider an example that illustrates the power of Proposition 1.8.

Example 1.10. These results yield a simple way to count the number of solutions (x, y, z) ∈ PG(2, q) to the
equation x2 + y2 = z2. Since x2 + y2 = z2 is a non-degenerate conic (note that if Q = X2 + Y 2 − Z2, then
det(MQ) = −1 6= 0), it is equivalent to xy = z2 by Proposition 1.8. By Corollary 1.9, there are precisely
q + 1 solutions.

Corollary 1.11. Every non-degenerate conic in PG(2, q) (q odd) is an oval.

Proof. Let C be a non-degenerate conic. Then C is a k-arc by Theorem 1.7 and has q+1 points by Corollary
1.9. Therefore, C is an oval.

We now shift our attention to properties of hyperovals. Recall that an arc in a projective plane of order q
can only have size q + 2 for q even; the remainder of this section will therefore focus exclusively on such
planes.

Proposition 1.12. Let H be a hyperoval in a projective plane π of order q even. Choose arbitrary u ∈ H,
and define the oval O = H \ {u}. Label the points of H by {x1, x2, ..., xq+1, u}, and let Li denote the unique
tangent line to O through xi. Then the lines L1, L2, ..., Lq+1 meet at the point u.

Proof. Consider x1 ∈ O. Then we classify all lines containing x1:

1. There is a unique line through x1 and y for every y ∈ O; this accounts for q lines secant to O. Note
that none of these lines contain u, as otherwise three points of O would be collinear.

2. There is a unique line L1 through x1 and u. This accounts for one line tangent to O.

We have thereby accounted for all lines of π containing x1. Note that the unique tangent line to O containing
x1 (i.e. L1) contains u. Repeat this process for every xi, 2 ≤ i ≤ n+ 1. This shows every Li contains u, as
claimed.

Definition 1.13. Let π be a projective plane of order q even. The nucleus of an oval O in π is the intersection
of the q + 1 tangent lines to O (labeled u in the previous proposition).

Definition 1.14. A hyperoval is called regular if its points consist of the q + 1 points of an oval O and the
nucleus of O. Otherwise, a hyperoval is called irregular.

Example 1.15. Consider the Fano Plane (i.e. PG(2, 2)) as pictured in Figure 2. Then {A,C,E} forms an
oval with nucleus G. Therefore, {A,C,E,G} is a regular hyperoval.
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Figure 2: The Fano Plane

Example 1.16. All hyperovals in PG(2, 2), PG(2, 4), and PG(2, 8) are regular. However, irregular hyper-
ovals exist in PG(2, 2e) for all e ≥ 4; for justification of these facts, see Lemma 8.21, Corollary 8.32, and
Theorem 8.37 of [4]. For example, Lunelli and Sce proved [6] that if η ∈ F16 such that η4 = η + 1, then

{(1, t, η12t2 + η10t4 + η3t8 + η12t10 + η9t12 + η4t14|t ∈ F16 ∪ {(0, 1, 0), (0, 0, 1)}}

is an irregular hyperoval in PG(2, 16). Furthermore, Hall proved [3] (using a computer), and later O’Keefe
and Penttila proved [8] (without a computer), that every irregular hyperoval of PG(2, 16) is equivalent to the
Lunelli-Sce hyperoval. For additional results about hyperovals, see e.g. [4] or Penttila [9].

Since every conic is an oval (Corollary 1.11), we could define the nucleus of a conic using the corresponding
definition for the nucleus of an oval (Definition 1.13). However, the coordinates of the nucleus of a conic in
a projective plane of even order may be determined precisely.

Proposition 1.17. Suppose C is a conic in PG(2, q), q = 2e for some e ∈ N, defined by

Q = aX2 + bY 2 + cZ2 + fY Z + gXZ + hXY = 0.

Then the nucleus of C is (f, g, h).

Proof. (Uses [2], in part)
Calculating partial derivatives of Q, and remembering that we are in characteristic 2, we have:

∂Q

∂X
= gZ + hY,

∂Q

∂Y
= fZ + hX, and

∂Q

∂Z
= fY + gX.

Then the tangent line to this conic at the point T = (x0, y0, z0) is:

0 =
∂Q

∂X

∣∣∣∣
T

X +
∂Q

∂Y

∣∣∣∣
T

Y +
∂Q

∂Z

∣∣∣∣
T

Z

0 = (gz0 + hy0)X + (fz0 + hx0)Y + (fy0 + gx0)Z, (4)

To show that (f, g, h) lies on every tangent line, we need only show that (f, g, h) is a solution to (4) for any
(x0, y0, z0). This follows immediately, as

(gz0 + hy0)f + (fz0 + hx0)g + (fy0 + gx0)h = 2fgz0 + 2fhy0 + 2ghx0 = 0.

Therefore, (f, g, h) is the nucleus of C (note that we can say “the” nucleus because in a projective plane, two
lines intersect in a unique point; so if all tangent lines intersect at (f, g, h), this is the only place they can
intersect).
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2 Segre’s Theorem

The purpose of this section is to prove Segre’s Theorem, which is Theorem 2.4 below. We start with some
preliminary results. Let O be an oval in PG(2, q), q an odd prime power. We will need a lemma to prove
Proposition 2.3.

Lemma 2.1. If q is an odd prime power, then ∏
a∈F∗

q

a = −1

We will present two proofs of this result.

Proof 1. Let a ∈ F∗q . Then

a = a−1 ⇔ a2 = 1⇔ a = ±1.

Therefore, ∏
a∈F∗

q

a =
(
a1a
−1
1

) (
a2a
−1
2

)
...
(
a−1q−3

2

a−1q−3
2

)
(1)(−1) = (1)(1)...(1)(1)(−1) = −1

Proof 2. We know that a ∈ F∗q if and only if a is a root of xq−1 − 1. Therefore,

xq−1 − 1 =
∏
a∈F∗

q

(x− a) = xq−1 −
(∑

a
)
sq−2 +

(∑
aiaj

)
xq−3 − ...−

(∑
ai1 ...aiq−2

)
x+ a1...aq−1,

with the second equality holding by Viete’s Theorem. Comparing corresponding terms, we find that
a1...aq−1 = −1.

Definition 2.2. A triangle with its vertices on O is called an inscribed triangle of O. A triangle whose sides
are tangent to O is called a circumscribed triangle of O. If the sides of a circumscribed triangle are tangent
to O at the vertices of an inscribed triangle, these two triangles may be called mates.

Proposition 2.3. [5] Every inscribed triangle of O and its mate are in perspective.

Proof. Without loss of generality, suppose that the inscribed triangle is the triangle of reference (i.e. has
vertices A1 = (1, 0, 0), A2 = (0, 1, 0), and A3 = (0, 0, 1)). For i = 1, 2, 3, define ai to be the tangent line to
O at Ai. Then a1 has equation y = k1z, a2 has equation z = k2x, and a3 has equation x = k3y for some
k1, k2, k3 ∈ F∗. See Figure 3.

Figure 3: The triangle of reference and its mate.
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Choose arbitrary B = (c1, c2, c3) ∈ O \ {A1, A2, A3}. If we assume to the contrary that c1 = 0, then the
line containing B and A3 is x = 0. However, this would imply that B,A2, and A3 are all on the line x = 0,
violating the requirement that no three points on an oval are collinear. Therefore, we conclude c1 6= 0. By
similar reasoning, c2 6= 0 and c3 6= 0. Now, note that:

1. The line containing A1 and B has equation y = h1z, where h1 = c2c
−1
3 .

2. The line containing A2 and B has equation z = h2x, where h1 = c3c
−1
1 .

3. The line containing A3 and B has equation x = h3y, where h3 = c1c
−1
2 .

In addition, note that h1h2h3 = c2c
−1
3 c3c

−1
1 c1c

−1
2 = 1. Therefore, using XY to denote the line containing

the points X and Y , we have the following result:

Conclusion: Let A1A2A3 be the triangle of reference and B ∈ O\{A1, A2, A3}. Then if the lines A1B,A2B,
and A3B have equations y = h1z, z = h2x, and x = h3y respectively, then h1h2h3 = 1.

Claim: k1k2k3 = −1, where we recall that y = k1z, z = k2x, and x = k3y are the tangent lines to O at
A1, A2, and A3 respectively.

Proof: (adapted from Step 4 on page 140 of [1]) Label the q + 1 points of O by A1, A2, A3, p4, p5, ..., pq+1.
Note that L := A2A3 must be the line x = 0. Consider the point A1 = (1, 0, 0). It lies on:

1. The tangent at A1, which has equation y = k1z and intersects L at (0, k1, 1).

2. The secant containing A1 and A2.

3. The secant containing A1 and A3.

4. The secants containing A1 and pi, 4 ≤ i ≤ q + 1, which intersect L at (0, ki, 1) with ki ∈ F∗q .

Note that since no two of these lines will intersect L at the same place (otherwise, the lines would be the
same, forcing 3 collinear points of O), the ki (i = 1 or 4 ≤ i ≤ q + 1) are distinct. Therefore,

k1

q+1∏
i=4

ki =
∏
x∈F∗

q

x = −1,

with the last equality following from Lemma 2.1.
Now, we switch our perspective from lines containing A1 to lines containing A2. Let L′ denote the line

containing A1 and A3, and proceed as above. We find

k2

q+1∏
i=4

k′i =
∏
x∈F∗

q

x = −1.

Finally, we use a similar approach on lines containing A3. Letting L′′ be the line containing A1 and A2, we
have

k3

q+1∏
i=4

k′′i =
∏
x∈F∗

q

x = −1.

Multiplying these three results together yields:
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−1 = (−1)3 =

(
k1

q+1∏
i=4

ki

)(
k2

q+1∏
i=4

k′i

)(
k3

q+1∏
i=4

k′′i

)

= k1k2k3

q+1∏
i=4

kik
′
ik
′′
i

= k1k2k3

q+1∏
i=4

1

(This is because the lines y = kiz, z = k′ix, and x = k′′i y all intersect O at pi.

Therefore, kik
′
ik
′′
i = 1 by above conclusion.)

= k1k2k3

Thus, k1k2k3 = −1, as claimed.

3

Now, let a∩b denote the intersection of the lines a and b. Then define the points A′1 := a2∩a3 = (k3, 1, k2k3),
A′2 := a1∩a3 = (k1k3, k1, 1), and A3 := a1∩a2 = (1, k1k2, k2). Futhermore, we note that A1A′1 has equation
z = k2k3y, A2A′2 has equation x = k1k3z, and A3A′3 has equation y = k1k2x. Each of these three lines
contains the point K = (1, k1k2,−k2). Therefore, the triangles A1A2A3 and A′1A

′
2A
′
3 are in perspective with

respect to the point K, as in Figure 4.

Figure 4: Triangles in perspective

Theorem 2.4 (Segre’s Theorem). Let q be an odd prime power. Then every oval in PG(2, q) is a conic.

Proof. (adapted primarily from [5]) Let O be an oval in PG(2, q), where q is an odd prime power. Recall
from the proof of Proposition 2.3 that K = (1, k1k2,−k2) is the point of concurrency for the lines A1A′1, A2A′2,
and A3A′3. Assume without loss of generality that k1 = k2 = k3 = −1, and so K = (1, 1, 1).

Choose B = (c1, c2, c3) ∈ O \ {A1, A2, A3}, and let b denote the tangent line b1x+ b2y + b3z = 0 to O at
B. Since B is on b, we know that

b1c1 + b2c2 + b3c3 = 0. (5)

By Proposition 2.3, the triangle BA2A3 and the triangle with sides b, a2, and a3 are in perspective.
Let point P denote the intersection of the lines x = 0 and b; it is therefore the unique point determined

by the equation b2y + b3z = 0, namely P = (0, b3,−b2). Similarly, let point Q denote the intersection of the
line a2 : z = −x and the line BA3. BA3 has equation c2x − c1y = 0, and intersects z = −x at the point
Q = (c1, c2,−c1). Finally, we let R denote the intersection of the line a3 : x = −y and the line BA2. BA2

has equation c3x− c1z = 0, and intersects x = −y at the point R = (c1,−c1, c3). See Figure 5.
Since the points P = (0, b3,−b2), Q = (c1, c2,−c1), and R = (c1,−c1, c3) are collinear by Desargue’s

Theorem, we know that:
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Figure 5: Triangles in perspective implies colllinear points

0 = det

 0 b3 −b2
c1 c2 −c1
c1 −c1 c3


= −b3(c1c3 + c21)− b2(−c21 − c1c2)

= −b3c1c3 − b3c21 + b2c
2
1 + b2c1c2

This means that b2c
2
1 + b2c1c2 = b3c1c3 + b3c

2
1, and so

b2(c1 + c2) = b3(c1 + c3). (6)

If we similarly apply Desargue’s Theorem to the triangles BA1A3 and BA1A2 we find that

b3(c2 + c3) = b1(c1 + c2) and b1(c1 + c3) = b2(c2 + c3). (7)

Now, we have:

(b1, b2, b3) = (c1 + c2)(b1, b2, b3)

= (b1(c1 + c2), b2(c1 + c2), b3(c1 + c2))

= (b3(c2 + c3), b3(c1 + c3), b3(c1 + c2)) (by (6) and (7))

= b3(c2 + c3, c1 + c3, c1 + c2)

= (c2 + c3, c1 + c3, c1 + c2). (8)

Plugging (8) into (5) yields:

0 = (c2 + c3)c1 + (c1 + c3)c2 + (c1 + c2)c3

= 2(c1c2 + c2c3 + c1c3)

(9)

and since q is odd,
c1c2 + c2c3 + c1c3 = 0 (10)

for all points of the oval (besides A1, A2 and A3). Now, consider the conic

C := {(x, y, z)|xy + yz + xz = 0}.

Clearly, A1, A2, A3 ∈ C. Furthermore, (10) proves that each of the q− 2 points (c1, c2, c3) ∈ O\{A1, A2, A3}
lies on C. Therefore, C contains the q + 1 points of O. But Corollary 1.9 showed that C contains exactly
q + 1 points. Therefore, O = C, and thus O is a conic.
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