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1 Introduction

Can you factor either of the polynomials

Q1 = 2X2
3 + 2X1X2 −X1X3 − 4X2X3 − 6X3X4 + 3X1X4 or

Q2 = 2X2
3 + 2X1X2 −X1X3 − 4X2X3 − 6X3X4

into a product of polynomials of smaller degree? Feel free to use complex coef-
ficients, but no computers or calculators are allowed.

It turns out that one of Q1 and Q2 factors, while the other does not. If you
want to check your answer, or do not feel like trying, see the example in Section
2. Of course, we ultimately wish to consider the following general problem:

Given any quadratic form, determine whether it is a product of two
linear forms.

If you are uncertain about the meaning of the terms “quadratic form” or “linear
form”, definitions will appear in Section 2. Interestingly enough, this problem
has a simple solution, and was answered several centuries ago. However, many
people we talked to found it intriguing and were surprised they had not thought
about or seen this problem before. A solution will be a part of what we present
in this article. However, our story begins elsewhere.

Undoubtedly, every reader has tried to clarify a notion in one source by
consulting another, only to be frustrated that the presentations are inconsistent
in vocabulary or notation. Recently, this happened to us in a study of con-
ics. While reading Peter Cameron’s Combinatorics: Topics, Techniques, and
Algorithms [8], we encountered a definition of a non-singular quadratic form
Q = Q(x, y, z) as one that

...cannot be transformed into a form in less than three variables by
any non-singular linear substitution of the variables x, y, z.

Though the definition was clear, it did not appear to translate into simple
criteria for determining whether a given quadratic form was non-singular. In
searching for such a test, we found that various sources used the word “singular”
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to describe quadratic forms in (what seemed to be) completely different ways.
Complicating matters further was that terms such as “degenerate” and “re-
ducible” started to appear, and these three words were often used interchange-
ably. For more details regarding this usage, see Section 5, and in particular
Table 1.

In all, we found five criteria related to degeneracy (or non-degeneracy) of
quadratic forms Q = Q(x, y, z) in the literature. While we believed them to
be equivalent, few sources proved the equivalence of even two of them, and we
found only two sources that proved the equivalence of three. Three of the five
criteria have immediate generalizations to n dimensions.

Our main motivation for writing this paper was to show once and for all, for
ourselves and for the record, that the several conditions that are widely used
as definitions are actually equivalent. We found the writing process instructive,
and we hope the reader will find what we present to be useful. In particular,
many of the proofs we used draw ideas from the basic principles of analysis,
algebra, linear algebra, and geometry. We think that some of these equivalences
can serve as useful exercises in related undergraduate courses, as they help to
stress the unity of mathematics.

2 Notation and an example

The main object of our study below will be a quadratic form and its associated
quadric; we will now define these terms. Additional definitions and related
results can be found in Hoffman and Kunze [17] or in Shilov [31], for example.
Let F be a field whose characteristic, denoted char(F), is odd or zero. Examples
include the fields of rational numbers, real numbers, and complex numbers, as
well as finite fields containing an odd (prime power) number of elements. We
view Fn as the n-dimensional vector space over F. Any (n − 1)-dimensional
subspace of Fn is called a hyperplane. By F[X1, . . . , Xn], we will denote the ring
of polynomials with (commuting) indeterminants X1, . . . , Xn, and coefficients
in F. It will often be convenient to view a polynomial of k indeterminants as
a polynomial of one of them, with coefficients being polynomials of the other
k−1 indeterminants. For instance, a polynomial in F[X1, X2, X3] may be viewed
as an element of F[X2, X3][X1]; i.e. a polynomial of X1 whose coefficients are
polynomials of X2 and X3.

For f ∈ F[X1, . . . , Xn], let Z(f) = {(α1, . . . , αn) ∈ Fn : f(α1, . . . , αn) = 0}.
For f = (f1, . . . , fm), where all fi ∈ F[X1, . . . , Xn], we define Z(f) to be the
intersection of all Z(fi); note that the “Z” in Z(f) stands for the zeros of f .

A polynomial Q ∈ F[X1, . . . , Xn] of the form

Q = Q(X1, . . . , Xn) =
∑

1≤i,j≤n

aijXiXj ,

where aij = aji for all i, j, is called a quadratic form. Clearly, Q defines a
polynomial function Q : Fn → F, where (α1, . . . , αn) 7→ Q(α1, . . . , αn). Note
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that we use the same notation Q for both the algebraic object (i.e. the polyno-
mial) and the corresponding function. Z(Q) is often referred to as the quadric
corresponding to Q. For every Q, we define the n × n matrix of coefficients
MQ = (aij).

Let V denote the set of all degree one polynomials in F[X1, . . . , Xn] hav-
ing zero constant term, called linear forms, together with the zero polyno-
mial. V is a vector space over F, and {X1, . . . , Xn} is a basis of V . For any
linear transformation ϕ : V → V and any quadratic form Q, we can sub-
stitute ϕ(Xi) for Xi in Q for all i = 1, . . . , n. After simplifying the result
by combining like terms, we again obtain a quadratic form, which we denote
by Q̃ = Q(ϕ(X1), . . . , ϕ(Xn)) or Q̃(X1, . . . , Xn). For T = (t1, . . . , tn) ∈ Fn,

Q̃(T ) = Q(ϕ(X1)(T ), . . . , ϕ(Xn)(T )).
Next, a comment on derivatives. We treat partial derivatives formally, as is

done in algebra. For example, to differentiate Q with respect to X1, we view Q
as an element of F[X2, . . . , Xn][X1]:

Q = a11X
2
1 + (2a12X2 + · · ·+ 2a1nXn)X1 +

∑
1<i,j≤n

aijXiXj

and thus
∂Q

∂X1
= 2a11X1 + (2a12X2 + · · ·+ 2a1nXn).

Partial derivatives with respect to the other indeterminants are defined similarly.

The gradient field ∇Q of Q is then defined as ∇Q =
(

∂Q
∂X1

, . . . , ∂Q
∂Xn

)
.

Before stating our main result in the next section, we wish to first illustrate it
with an example.

Example. Let n = 4 and F be the field of real numbers (the following examples
are also valid over all fields of characteristic different from 2). Consider the
quadratic forms mentioned at the beginning of this article, namely

Q1 = 2X2
3 + 2X1X2 −X1X3 − 4X2X3 − 6X3X4 + 3X1X4

and
Q2 = 2X2

3 + 2X1X2 −X1X3 − 4X2X3 − 6X3X4.

We now examine several properties of Q1 and Q2.

1. We note that

MQ1 =


0 1 −1/2 3/2
1 0 −2 0
−1/2 −2 2 −3
3/2 0 −3 0


has row reduced echelon form

1 0 −2 0
0 1 −1/2 −3/2
0 0 0 0
0 0 0 0

 ,
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and thus rank(MQ1) = 2. In contrast,

MQ2
=


0 1 −1/2 0
1 0 −2 0
−1/2 −2 2 −3

0 0 −3 0


has rank 4 (i.e. is non-singular).

2. Define a linear transformation ϕ1 : V → V by

ϕ1(X1) = X1 + 2X3

ϕ1(X2) =
1

2
X2 +

1

2
X3 −

3

2
X4

ϕ1(X3) = X3

ϕ1(X4) = X4.

It is a straightforward verification that ϕ is non-singular, and that

Q̃1 = Q1(ϕ1(X1), ϕ1(X2), ϕ1(X3), ϕ1(X4)) = X1X2,

which contains only r = 2 indeterminants. Furthermore, we comment
(without proof) that for any non-singular linear transformation ϕ : V →
V , Q1(ϕ(X1), ϕ(X2), ϕ(X3), ϕ(X4)) contains at least two indeterminants:
the argument is the same as in the proof of Theorem 1.

In contrast, for any non-singular linear transformation ϕ : V → V ,

Q̃2 = Q2(ϕ(X1), ϕ(X2), ϕ(X3), ϕ(X4))

contains all four indeterminants. This also follows from the proof of The-
orem 1.

3. We now consider the zeros of the gradient fields of Q1 and Q2. We have

∇Q1 =


∂Q1/∂X1

∂Q1/∂X2

∂Q1/∂X3

∂Q1/∂X4

 =


2X2 −X3 + 3X4

2X1 − 4X3

−X1 − 4X2 + 4X3 − 6X4

3X1 − 6X3

 = 2MQ1
X,

where X = (X1, X2, X3, X4)t is the transpose of (X1, X2, X3, X4). There-
fore, Z(∇Q1) is the null space of the matrix 2MQ1

. In much the same
way,

∇Q2 =


2X2 −X3

2X1 − 4X3

−X1 − 4X2 + 4X3 − 6X4

−6X3

 = 2MQ2
X

implies that Z(∇Q2) is the null space of the matrix 2MQ2
. However, while

Z(∇Q1) has dimension 2 = 4− 2 = n− r, Z(∇Q2) has dimension 0 (i.e.
Z(∇Q2) contains only the zero vector).
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4. Q1 = (X1 − 2X3)(2X2 − X3 + 3X4), a product of two polynomials that
are not scalar multiples of each other. Q2 does not factor into a product
of linear polynomials (even over the complex numbers).

5. It is clear from the above factorization of Q1 that Z(Q1) is the union of two
hyperplanes whose equations are X1− 2X3 = 0 and 2X2−X3 + 3X4 = 0.
As X1−2X3 and 2X2−X3 + 3X4 are not scalar multiples of one another,
these hyperplanes are distinct. This contrasts with Z(Q2) containing only
the zero vector.

3 The main result

The main results of this paper are the following theorems. They lead to equiva-
lence of several definitions of degeneracy (or non-degeneracy) of quadratic forms.

Theorem 1. Let n ≥ 2, F be a field, and char(F) 6= 2. Let Q =
∑

1≤i,j≤n aijXiXj

be a non-zero quadratic form in F[X1, . . . , Xn]. Then the following statements
are equivalent.

1. The matrix MQ = (aij) has rank r.

2. There exists a non-singular linear transformation ϕ : V → V such that
Q̃ = Q(ϕ(X1), . . . , ϕ(Xn)) contains precisely r of the indeterminants X1,
. . ., Xn; furthermore, for any other non-singular linear transformation,
this number is at least r.

3. Z(∇Q) is a vector space of dimension n− r.

Define r, the rank of a quadratic form Q, as in any of the three equivalent
statements listed above. Clearly, r is an integer such that 0 ≤ r ≤ n. If r = 1 or
2, then one can supplement the above three statements with two more, which
appear frequently in the context of conics or quadratic surfaces. In the following,
let K denote a field that is either equal to F, or is a quadratic extension F(m)
of F for some m ∈ K \ F such that m2 ∈ F.

Theorem 2. Let n, F, and Q be as in Theorem 1, and let r = 1 or 2. Then
the following statements are equivalent.

1. The matrix MQ = (aij) has rank r.

2. There exists a non-singular linear transformation ϕ : V → V such that
Q̃ = Q(ϕ(X1), . . . , ϕ(Xn)) contains precisely r of the indeterminants X1,
. . ., Xn; furthermore, for any other non-singular linear transformation,
this number is at least r.

3. Z(∇Q) is a vector space of dimension n− r.

4. Q is a product of two linear forms with coefficients in K. These forms are
scalar multiples of one another if r = 1, and are not if r = 2.
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5. Z(Q) is a hyperplane in Kn for r = 1. Z(Q) is the union of two distinct
hyperplanes in Kn for r = 2.

Note that statements 1, 2, 3, and 5 primarily use terms of linear algebra, with
statement 3 having an analysis flavor and statement 5 a geometric one. State-
ment 4 is algebraic. Furthermore, take note of how the statements in Theorems
1 and 2 correspond to the properties of Q1 and Q2 discussed in the above ex-
ample.

We are now ready for our main definition.

Definition. Let Q be as in Theorem 1, and suppose Q has rank r.

1. If 1 ≤ r < n, we call Q degenerate and singular. If instead n = r, we call
Q non-degenerate and non-singular.

2. If r = 1 or 2, we call Q reducible. If instead r ≥ 3, we call Q irreducible.

We now make several comments about this definition.

• As a non-zero quadratic form can be factored only into the product of
two linear forms, our definition of irreducibility corresponds to the one
in algebra for polynomials. Indeed, a quadratic form factors into linear
forms (over some extension K of F) for n ≥ 2 if and only if 1 ≤ r ≤ 2.

• Similar definitions can be applied to the case n = 1. Note that the only
non-zero quadratic forms in one indeterminant are Q = aX2

1 , where a 6= 0.
Clearly, Q = (aX1)X1 factors, and therefore we say that Q is reducible.
Furthermore, as n = r = 1, we call Q non-degenerate and non-singular.

• We wish to emphasize that n = 3 is the only case in which the notions of
degeneracy, singularity, and reducibility are equivalent.

• Consider the example from Section 2. Note that since n = 4 and r = 2,
our definition implies that Q1 is degenerate, singular, and reducible. By
contrast, Q2 is non-degenerate, non-singular, and irreducible.

4 Proof of Theorems 1 and 2

First we remind the reader of a few well-known results that we will need.
Let Rt denote the transpose of a matrix R, and let X = (X1, . . . , Xn)t be

the column vector of indeterminants. Then, in terms of matrix multiplication,
we have [Q] = XtMQX, a 1× 1 matrix. From now on, we will view [Q] as the
polynomial Q, and simply write Q = XtMQX.

Let ϕ : V → V be a linear transformation, Yi = ϕ(Xi) for all i, and Y =
(Y1, . . . , Yn)t. Then we define

ϕ(X) = (ϕ(X1), . . . , ϕ(Xn))t,
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and therefore
ϕ(X) = (Y1, . . . , Yn)t = Y.

Letting Bϕ be the matrix of ϕ with respect to a basis {X1, . . . , Xn} of V , we
have

Y = BϕX.

This allows us to use matrix multiplication in order to determine MQ̃. Indeed,
we have

Q̃ = Q̃(X1, . . . , Xn) = XtMQ̃X

and

Q̃ = Q(ϕ(X1), . . . , ϕ(Xn)) = Q(Y1, . . . , Yn)

= Y tMQY

= (BϕX)
t
MQ (BϕX)

= Xt
(
Bt

ϕMQBϕ

)
X.

The equality XtMQ̃X = Xt
(
Bt

ϕMQBϕ

)
X, viewed as an equality of 1 × 1

matrices with polynomial entries, implies that

MQ̃ = Bt
ϕMQBϕ.

Recall that for any square matrix M and any non-singular matrix N of
the same dimensions, rank(MN) = rank(M) = rank(NM). Therefore, ϕ non-
singular implies that so is Bϕ. Thus

rank(MQ) = rank(MQ̃).

Finally, we remind the reader of the fundamental fact (see, e.g. [31], Section
7.33(b)) that given any quadratic form Q with rank(MQ) = r, there exists a non-
singular linear transformation ψ of V such that if Q′ = Q(ψ(X1), . . . , ψ(Xn)),
then MQ′ is diagonal. In other words,

Q′ = d1X
2
1 + · · ·+ drX

2
r ,

where all di are non-zero elements of F. This implies that for any non-singular
linear transformation ϕ of V , Q̃ = Q(ϕ(X1), . . . , ϕ(Xn)) contains at least r

variables Xi. Indeed, if Q̃ contained r′ < r variables, then r = rank(MQ) =
rank(MQ̃) ≤ r′, a contradiction.

We are now ready to prove Theorems 1 and 2. Let (k) stand for statement k of
Theorem 1 or Theorem 2, k = 1, . . . , 5.

(1) ⇔ (2). The statement follows immediately from our remarks above on the
diagonal form of Q, as the rank of a diagonal matrix is the number of its non-
zero entries.
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(1) ⇔ (3). It is straightforward to verify that (2MQ)X = ∇Q. Since char(F) 6=
2, Z(∇Q) coincides with the null-space of MQ. Hence, dim(Z(∇Q)) = n −
rank(MQ) = n− r.

This proves the equivalence of statements (1), (2), and (3), and thus con-
cludes the proof of Theorem 1. We remind the reader that this equivalence leads
to the notion of the rank of a quadratic form Q, which was defined to be r from
any of these equivalent statements.

We now suppose that the rank of Q is r = 1 or 2.

(2) ⇔ (4). We have rank(MQ) = r = 1 or 2. As explained above, there exists

a non-singular transformation ψ of V such that Q′ = Q(ψ(X1), . . . , ψ(Xn)) =
d1X

2
1 + · · ·+ drX

2
r with all di being non-zero elements of F, and rank(MQ′) =

rank(MQ) = r. If r = 1, then Q′ = d1X
2
1 , where d1 6= 0. Then Q =

d1(ψ−1(X1))2 factors as claimed. If instead r = 2, then Q′ = d1X
2
1 + d2X

2
2 ,

where both di 6= 0. Let m ∈ K such that m2 = −d2/d1. Then

Q′ = d1X
2
1 + d2X

2
2

= d1

(
X2

1 −
−d2
d1

X2
2

)
= d1

(
X2

1 −m2X2
2

)
= (d1X1 − d1mX2)(X1 +mX2).

Clearly, the two factors of Q′ are independent in the vector space of linear forms
in K[X1, . . . , Xn]; otherwise, m = −m, which is equivalent to m = 0 because
char(F) 6= 2. This implies d2 = 0, a contradiction. Hence,

Q =
(
d1ψ

−1(X1)− d1mψ−1(X2)
)
·
(
ψ−1(X1) +mψ−1(X2)

)
.

Since ψ−1 is non-singular, ψ−1(X1) and ψ−1(X2) are linearly independent over
F. Hence, the factors of Q are linearly independent over K. This proves that
(2) ⇒ (4).

Suppose Q factors over K such that Q = a(a1X1+· · ·+anXn)2 with a, ai ∈ K
and a 6= 0. Permuting indices as necessary, suppose a1 6= 0; then apply the linear
substitution ϕ defined by

ϕ(X1) =
1

a1
X1 −

n∑
i=2

ai
a1
Xi and ϕ(Xi) = Xi for all 2 ≤ i ≤ n.

This transformation is non-singular, and the resulting quadratic form Q̃ = aX2
1

has r = 1 indeterminant, implying (2).
Suppose instead that Q factors over K with Q = (a1X1+ · · ·+anXn)(b1X1+

· · · + bnXn), where ai, bi ∈ K such that the factors do not differ by a scalar
multiple. This is equivalent to the vectors (a1, . . . , an) and (b1, . . . , bn) being
linearly independent. Therefore, permuting indices as necessary, the vectors
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(a1, a2), (b1, b2) ∈ F2 are linearly independent with a1 6= 0 and b2 6= 0. Apply
the linear substitution ϕ defined by

ϕ(X1) = α11X1 + α12X2 + · · ·+ α1nXn

ϕ(X2) = α21X1 + α22X2 + · · ·+ α2nXn

ϕ(Xi) = Xi for all i = 3, . . . , n,

where (αij) is the inverse of the matrix
a1 a2 a3 · · · an
b1 b2 b3 · · · bn
0 0
...

... In−2
0 0

 ,

and In−2 is the (n− 2)× (n− 2) identity matrix. This non-singular transforma-

tion produces the quadratic form Q̃ = X1X2, which contains r = 2 indetermi-
nants. Note that if there existed a linear transformation φ : V → V such that
Q̂ = Q(φ(X1), . . . , φ(Xn)) had only one indeterminant, then 1 = rank(MQ̂) =

rank(MQ) = rank(MQ̃) = 2, a contradiction. This proves that (4) ⇒ (2).

(4) ⇔ (5). The implication (4) ⇒ (5) is obvious, and we concentrate on the
converse.

Let a1X1 + · · · + anXn = 0 be an equation of a hyperplane W of Kn such
that W ⊆ Z(Q). Then for every solution (α1, . . . , αn) of a1X1+ · · ·+anXn = 0,
Q(α1, . . . , αn) = 0. As not all ai are zero, we may assume by permuting the
indices as necessary that a1 6= 0. Dividing by a1, we rewrite the equation
a1X1 + · · · + anXn = 0 as X1 + a′2X2 + · · · + a′nXn = 0. Viewing Q as an
element of K[X2, . . . , Xn][X1] and dividing it by X1 + (a′2X2 + · · ·+a′nXn) with
remainder, we obtain

Q = q · (X1 + (a′2X2 + · · ·+ a′nXn)) + t,

with quotient q ∈ K[X2, . . . , Xn][X1] and remainder t ∈ K[X2, . . . , Xn]. Now,
Q(w1, . . . , wn) = 0 = w1 + (a′2w2 + · · · + a′nwn) for every (w1, . . . , wn) ∈ W .
Furthermore, for every (w2, . . . , wn) ∈ Kn−1, there exists w1 ∈ K such that
(w1, . . . , wn) ∈W . This implies that t(w2, . . . , wn) = 0 for every (w2, . . . , wn) ∈
Kn−1. The following lemma will allow us to conclude that t = 0:

Lemma. Let n ≥ 1, K be a field such that char(K) 6= 2, and f ∈ K[X1, ..., Xn]
be a quadratic form that vanishes on Kn. Then f = 0.

Proof. We proceed by induction. For n = 1, f = f(X1) = aX2
1 for some a ∈ K.

Then 0 = f(1) = a, and so f = 0.
Suppose the statement holds for all quadratic forms containing fewer than

n indeterminants. We write f as

f(X1, . . . , Xn) = aX2
1 + f2(X2, . . . , Xn)X1 + f3(X2, . . . , Xn),
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where a ∈ K, f2 ∈ K[X2, . . . , Xn] is a linear form, and f3 ∈ K[X2, . . . , Xn] is
a quadratic form. As char(K) 6= 2, we know that 0, 1, and −1 are distinct
elements of K. As f vanishes on Kn, f vanishes at every point of the form
(α, α2, . . . , αn) ∈ Kn with α ∈ {0, 1,−1}. Therefore, we obtain the three equa-
tions

0 = f(0, α2, . . . , αn) = f3(α2, . . . , αn)

0 = f(1, α2, . . . , αn) = a+ f2(α2, . . . , αn) + f3(α2, . . . , αn)

0 = f(−1, α2, . . . , αn) = a− f2(α2, . . . , αn) + f3(α2, . . . , αn)

for all (α2, . . . , αn) ∈ Kn−1. By induction hypothesis, the first equation implies
that f3 = 0. Then the second and third equations imply that a = 0 and that
f2(α2, . . . , αn) = 0 for all (α2, . . . , αn) ∈ Fn−1. Let f2 = a2X2 + · · ·+ anXn. If
f2 6= 0, then there exists ai 6= 0. Setting αi = 1 and αj = 0 for all j 6= i, we
obtain 0 = f2(0, . . . , 0, 1, 0, . . . , 0) = ai 6= 0, a contradiction. Thus, f2 = 0, and
so f = 0. The lemma is proved.

Indeed, this lemma implies that t = 0. Therefore, Q factors into a product
of two linear forms, each defining a hyperplane in Kn. We now proceed based
on whether r = 1 or 2. If r = 1, then Z(Q) is a hyperplane of Kn. Thus,
both factors of Q must define Z(Q), and so they are non-zero scalar multiples
of one another. If instead r = 2, then Z(Q) is the union of two hyperplanes of
Kn, corresponding to the two factors of Q. As the hyperplanes are distinct, the
factors are not scalar multiples of one another. Therefore (5) ⇒ (4).

This concludes the proof of the theorem.

5 Related terminology in the literature

We now present a table of sources that utilize the statements from Theorems
1 and 2. The letters used in the table are as follows: D for degenerate, S
for singular, and R for reducible. The columns labeled (1) to (5) refer to the
corresponding statements from the theorems. Entries with a ∗ indicate that the
source mentions the statement, but does not use a particular term to describe
it. In addition to providing the reader with additional materials, we use this
table to illustrate the variety of ways in which the words degenerate, reducible,
and singular are used to refer to these statements. In particular, we encourage
the reader to note that each word is used to describe multiple statements, and
that statements (1), (2), (4), and (5) are each referred to by multiple words!

A few additional notes will prove useful before studying the table. While
some sources consider forms (often in the n = 3 case), others focus on conics
in the classical projective plane PG(2, q). As conics are simply quadrics in
projective space, it is not surprising that the characterizations of degenerate
quadrics and degenerate conics are nearly identical. Thus, we will not make any
further attempt to distinguish them. In addition, we found many sources that
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discuss equivalent notions, but not in the context of quadratic forms or conics;
they have therefore been excluded from this table.

Finally, we emphasize that we intend this table to illustrate vocabulary us-
age in some of the sources that are available to us; the decision to exclude (or
include) a source should not be interpreted as a criticism (or endorsement).

Table 1: This table illustrates the variety of ways in which the words degenerate
(D), reducible (R), and singular (S) are used in the literature to refer to the
statements in Theorems 1 and 2. A ∗ indicates that a source refers to the
statement, but does not use a particular term to describe it.

(1) (2) (3) (4) (5)

[1] D or S
[2] R ∗
[3] D D
[4] S
[6] R
[8] S
[9] ∗ D
[10] ∗ S R R
[11] S ∗
[15] ∗ ∗ S
[16] S
[19] ∗ ∗ ∗
[20] D
[23] ∗ D D
[24] ∗ S
[25] ∗ D D
[26] ∗ R
[28] D
[29] ∗ ∗ D or R ∗
[30] D ∗
[31] S
[33] ∗ D
[35] ∗ S R

6 Concluding remarks

The discussion in previous sections leads to many interesting questions. We will
briefly describe some of them.

What about similar studies of higher order forms? Let 1 ≤ d ≤ n, f ∈
F[X1, . . . , Xn] such that f =

∑
(i1,...,id)

ai1...idXi1 · · ·Xid , where all ai1...id ∈
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F, and summation is taken over all integer sequences (i1, . . . , id), 1 ≤ i1 ≤
i2 ≤ · · · ≤ id. Then f is called a d-form of n indeterminants. 1-forms and
2-forms were discussed in the previous sections as linear and quadratic forms,
respectively. When d ≥ 3, the coefficients ai1...id can be considered as entries
of a d-dimensional matrix, which has nd entries total. Such matrices and their
determinants have been studied for more than three hundred years, and by many
mathematicians, including Cayley, Silvester, Weierstrass, Garbieri, Gegenbauer,
Dedekind, Lecat, Oldenburger, and Sokolov. The time and space necessary to
define related notions and results is much more that this article allows, and
we refer the reader to a monograph by Sokolov [32]. It contains a complete
classification of forms over the fields of real and complex numbers for d = 3 and
n = 2 or 3, but discussion even of these cases is far from short. (The classification
is with respect to the non-singular linear transformation of variables). While
the monograph is in Russian, it contains 231 references in a variety of languages.

The question of factorization of a general d-form with n indeterminants, over
a field for d ≥ 3, seems to be highly non-trivial, and we could not find any useful
criteria for this.

The question of classification of quadratic forms over the integers with re-
spect to the unimodular linear transformation of variables is classical, and sig-
nificant progress was made in this direction in the 18th and 19th century, culmi-
nating with the work of Gauss. Its source is the problem of representing integers
by a given quadratic form with integer coefficients. For example:

Let Q(X,Y ) = X2 − XY + 5Y 2. Describe all ordered triples of
integers (n, a, b) such that n = Q(a, b).

For related results and their extensions for forms over other rings, see O’Meara
[27], Buell [7], and Conway [12]. For new directions and results related to multi-
dimensional determinants, d-forms, see Gelfand, Kapranov, and Zelevinsky [13].
For cubic forms in algebra, geometry and number theory, see Manin [22].
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