
Dr. L. Frye CSC552 Spring 2014

A Web Server: Threads

Objectives

 Learn basic thread concepts and thread synchronization.

 Understand thread-safety and error handling.

 Learn how real-world multi-threaded servers are built.

Specification

This project will modify the webserver previously developed by implementing threads to handle

multiple simultaneous client connections instead of processes. This is typical producer-consumer

synchronization problem with a single producer (web server) and multiple consumers (web

clients).

The most basic thread implementation of a web server is a single-threaded web server. The

disadvantage of this type of server is that it does not scale to multiple simultaneous client

requests. The next step is a multi-threaded web server. In this case, a worker thread is created for

each client connection. This will scale much better than the single-threaded web server but still

suffers by the limit on the maximum number of threads for the thread package utilized. If more

clients try to connect than threads are available, the server will not be able to satisfy all the

requests. In this case, the request should be placed into a waiting queue so it can be serviced

when a thread is available.

The next stop is a thread-pool approach. In this type of server the main thread will create a pool

of worker threads. As the main thread processes connection requests, it creates request objects

and places them in a data structure. Each worker thread will retrieve request objects from the

data structure according to some scheduling algorithm and respond to the request. The only limit

with this type of threaded server is memory.

You will modify the previous web server project by implementing it as a thread-pool web server.

The main thread will:

 Set up the socket

 Create thread pool

 Accept new connections from clients

 Create request structure/object and add it to a request queue

 Assign request objects to worker thread

Dr. L. Frye CSC552 Spring 2014

The worker threads will:

 Read request from request queue

 Process the HTTP request

 Send the HTTP response

 Do any clean up

 Exit the thread

Usage Clause

 webserver <port_number>

Notes

 Request queue must be protected with mutex so items are protected.

Comparison
Add a new section to the readme file. This section will be a performance comparison of the

process web server and the thread web server. Include the tests you ran to compare the

performance as well as the results of each test. Also include a brief summary of your findings.

