
Dr. L. Frye CSC552 – Advanced UNIX Programming Spring 2014

Name___

CSC552 Final, Take-home Spring 2014

[40 points]

I. Short Answer: Concisely respond to each of the questions given. Answers should

answer the question asked in detail but correspond to number of points of the question.

1. We discussed 6 possible solutions to achieve mutual exclusion. Briefly explain 4 of these.

Include a brief description as well as any advantages or disadvantages. [12 points – 3 each]

2. Describe how message passing (send() and recv()) can be used to provide mutual exclusion.

Include in your explain what send() and recv() do and how they would be used. [8 points]

3. Explain the implementation differences in the last two programs (shared memory vs.

message queues), including such things as complexity, efficiency, correctness, etc. Also

include a comparison of run-times between the two implementations. [10 points]

Dr. L. Frye CSC552 – Advanced UNIX Programming Spring 2014

4. Answer just ONE of a or b for this question. [10 points]

a. This is a possible solution for the producer-consumer problem.
 #define N 100 /* number of slots in the buffer */

int count = 0; /* number of items in the buffer */

void producer()

{

 while (TRUE) { /* loop forever */

 produce_item(); /* generate next item */

 if (count == N) sleep(); /* if buffer is full, go to sleep */

 enter_item(); /* put item in buffer */

 count = count + 1; /* increment count of items in buffer */

 if (count == 1) wakeup(consumer); /* was buffer empty? */

 }

} /* end producer */

void consumer()

{

 while (TRUE) { /* loop forever */

 if (count == 0) sleep (); /* if buffer is empty, go to sleep */

 remove_item(); /* take item out of buffer */

 count = count – 1; /* decrement count of items in buffer */

 if (count == N-1) wakeup(producer); /* was buffer full? */

 consume_item(); /* print item */

 }

} /* end consumer */

What is wrong with this code (be specific and explain your answer)? How can it be

corrected?

Dr. L. Frye CSC552 – Advanced UNIX Programming Spring 2014

b. This is another possible solution to the producer-consumer problem.
#define N 100 /* number of slots in the buffer */

typedef int semaphore; /* semaphores are a special kind of int */

semaphore mutex = 1; /* controls access to critical section */

semaphore empty = N; /* counts empty buffer slots */

semaphore full = 0; /* counts full buffer slots */

void producer()

{

 int item;

 while (TRUE) { /* loop forever */

 produce_item(&item); /* generate next item */

 down(&mutex); /* enter critical section */

 down(&empty); /* decrement empty count */

 enter_item(); /* put item in buffer */

 up(&mutex); /* leave critical section */

 up(&full); /* increment count of full slots */

 }

} /* end producer */

void consumer()

{

 int item;

 while (TRUE) { /* loop forever */

 down(&full); /* decrement full count */

 down(&mutex); /* enter critical section */

 remove_item(&item); /* take item out of buffer */

 up(&mutex); /* leave critical section */

 up(&empty); /* increment count of empty slots */

 consume_item(item); /* do something with item */

 }

} /* end consumer */

What is wrong with this code (be specific and explain your answer)? How can it be

corrected?

