CONCURRENT/DISTRIBUTED PROGRAMMING
ILLUSTRATED USING THE DINING PHILOSOPHERS

PROBLEM"

S Krishnaprasad
Mathematical, Computing, and Information Sciences
Jacksonville State University
Jacksonville, AL 36265
Email: skp@jsucc.jsu.edu

ABSTRACT

Many paradigmsand techniques of distributed computing and concurrent processing
have matured and are popular. A quick and effective way to assmilate the basics
of these principlesisto illugtrate them usng a Ingle but smple example, avoiding
language-specific and tool-specific details and syntax. Inthispaper weconsder the
famous diningphilosophers problemand indicate severd solutions to it based onthe
various concurrent/distributed computing concepts.

1. INTRODUCTION

Advances in hardware, networking, and software have led to widespread use of
concurrent and distributed processing techniques. Since many of these technologies have
matured it isimportant for software professionals and computer science studentsto have basic
understanding of these techniques. One of the ways to learn about a variety of techniquesisto
see them dl in agiven context. We may consder this as a "one stop shopping” approach of
presenting the concepts. Inconcurrent and di stributed computing the following are popular and
meature techniques for synchronization and mutua exduson: semaphores, monitors, message
passing, remote procedure cdl and rendezvous. An excdlent introduction and discussion of

" Copyright © 2003 by the Consortium for Computing in Small Colleges. Permission to copy
without fee al or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and noticeis given that copying is by permission of the Consortium
for Computing in Small Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

104

CCSC: South Centra Conference

these topics can be found in the text by Andrews [1]. The intricaciesof these methods can be
quickly assmilatedif they are al presented with a single application example. In this paper we
illugtrate these techniques as gpplied to the dining philosophers problem.

The dining philosophers problem (DPP) [4] is one of the popular examples used in
operating systems course to illugtrate the basic concepts of mutud exclusion, synchronization,
and deadlock. This problem was firgt introduced by Dijkstra[3] inwhichfive philosophers are
seated around a dinner table. In front of each philosopher isa plate of spaghetti. A philosopher
needs two forks (left and right) to est. But there are only five forks on the table placed in
between each of the five plates. Each philosopher can only do two things think or eat. No forks
are needed for thinking. A philosopher hasto acquire both the forks before the esting process.
After finishing eating, a philosopher places forks back onthe table and resumesthinking. Note
that a most two philosophers may eat concurrently. Chandy and Misra[2] have agiven more
forma treatment of this problem.

Section 2 illudrates a solution to the DPP uang semaphores and section 3 shows a
solution based on monitors. A solution based on message passing paradigm is presented in
section4. Section5 shows how to use remote procedure cal technique to implement the DPP.
Finaly, section 6 presents a solution based on the rendezvous method. Conclusons follow in
section7. We highly recommend the book by Andrews[1] for the detailed and ludd exposition
of the concepts and techniques related to multithreaded, pardld, and distributed computing.

2. USING SEMAPHORES

Semaphore isakind of shared variable which is manipulated by two specid operations
known as P and V. Semaphore variables assume non-negative integer values. Suppose x isa
semaphore variable. Then, the operationV (x) incrementsthe vaue of x by one atomically. P(x)
operation, also executed aiomicdly, has the following effect: the process executing the P(x)
operation waits until the vaue of x is pogtive; then it decrements x by one and continues.
Semaphore is an important low-level abgraction to implement mutual excluson and
synchronization amongst concurrent processes.

Inthe DPP eachfork isa shared resource. We may represent the forks by anarray of five
semaphores. Acquiring afork uses a P operation and rdeasing a fork usesa 'V operation on
appropriate semaphores. Philosophers 0 to 3 grab the left fork first and then the right fork.
Philosopher 4 grabs theright fork first and then the left fork. This is done to avoid deadlock.
The necessary mutua exclusion and synchronization actions based on semaphores are shown
in the fallowing solution:

// DPP solution based on semaphores

Semaphorefork[5] ={ 1,1,1,1, 1};
// an array of five semaphore variables, all initialized to 1

process philosopher [k =0to 3] // concurrent processes of first four philosophers

Begin
Do

105

JCSC 18, 4 (April 2003)

Think;
/Inow hungry, ready to eat

P(fork[k1); /I grab the left fork
P(fork[k+11); /I grab the right fork
Eat the spaghetti;
V(fork[k1); /I release the lft fork
V(fork[k+11); /Irelease theright fork

Until death

End

process philosopher [4] // concurrent process of the last philosopher

Begin
Do
Think;
/Inow hungry, ready to eat
P(fork[0]); // grab theright fork
P(fork[41); /I grab the | eft fork
Eat the spaghetti;
V(fork[01]); /l release the right fork
V(fork[41); /lrelease the | eft fork
Until death
End

3. USING MONITORS

Monitors are class-like abstractions used to encapsulate shared data and a set of
operations (procedures) to manipulate those data. Procedures inside a monitor are executed
mutudly exdusvey. Thus, when concurrent processes access monitor's procedures, mutud
excduson is implicily guaranteed. But, condition synchronization need to be expliatly
programmed ing de the monitor usng conditionvariables. A condition variable is used to delay
aprocess until some monitor's sate is met & which time the waiting process will be awakened.
Typicaly aqueue of waiting processes is associated with each condition varigble. Primitives
like wait() and signal() are used for coding synchronization aspects. A monitor-based solution
for the DPP follows:

/I DPP solution based on monitors
Monitor Dining_Controller
Begin
Cond ForkReady[5]; // condition variables for synchronization
Boolean Fork[5] = {true, true, true, true, true}; // availability status of each fork

Procedure get _forks (pid) // pid isthe philosopher id #: 0to 4
Begin
int left = pid; int right = (pid +1) mod 5;
/lgrant the left fork
if (NOT Fork[left]) wait(ForkReady[left]); // enqueue in the condition variable queue
Fork[left] = false;
/lgrant the right fork
if (NOT Fork[right]) wait(ForkReady[right]); // enqueue in the condition variable queue
Fork[right] = fase;
End

106

CCSC: South Centra Conference

Procedure release forks(pid)

Begin

int left = pid; int right = (pid +1) mod 5;
/I release the | eft fork

if (Empty(ForkReady][l€ft])) // no oneiswaiting for thisfork
Fork[left] = true;
ese

Signal (ForkReady([l€ft]); // awaken a process waiting on thisfork
Il release theright fork

if (Empty(ForkReady[right])) / no oneiswaiting for thisfork
Fork[right] = true;
else

Signal (ForkReady[right]); // awaken a process waiting on thisfork
End

End // Dining_Controller monitor

Process Philosopher [k=0 to 4] // the five philosopher clients
Begin
Do
Think;

Dining_Controller.get_forks(k); // client requests for forks via the monitor
Eat spaghetti;

Dining_Controller.release forks(k); // client releasesits forks via the monitor
Until death

End

4. USING MESSAGE PASSING

In loosdly coupled multiprocessng systems and distributed systems, processes
communicate usng explicit message passing via a communication network. A channe
abstraction is employed to provide this communication path between processes. A channel
represents a queue of messages that have been sent but not yet received. A process sends a
message to a channel using a send primitive: send channd_ID (parameter list). A process
receives a message from a channel usng a receive primitive: receive channd_ID (parameter
ligt). A message typicaly includes client 1D, the kind of operation being requested, and any
parametersresults. A solution for DPP using message passing is given next.

/I DPP solution based on message passing

Type op_kind enum (ACQ, REL); // two kinds of operations: acquire and release forks
Channel request (int cid, op_kind kind); // request channel
Channel reply[5](); // an array of fivereply channels

Process Dining_Server
Begin

Boolean fork[5] = {true, true, true, true, true} ; // indicates fork availability

Queue WQ; // queue for clientswaiting on forks

int left, right, cid; op_kind kind;

DO
Receive request (cid, kind); // server receives client request via message passing
left = cid; right = (cid +1) mod 5;

107

JCSC 18, 4 (April 2003)

If (kind == ACQ) // requested operation is acquire forks
If (fork[left] && fork[right])
Send reply[cid] (); // server informs client via message passing
Else
Enqueue(WQ, cid); // put the client in queue until forks are available
Else // requested operation isrelease forks

{
fork[left] = true; fork[right] = true;
Send reply[cid] (); // server acknowledges client via message passing
Assign_Forks To A Waiting_Client()://assumed procedure in the server
}
WHILE (true);

End // Dining_Server

Process Philosopher [k=0 to 4] // thefive clients
Begin
Do
Think;
Send request (k, ACQ); // client requests for forks from the server via message passing
Receive reply[K] (); // client receives acknowledgement from the server via message passing
Eat spaghetti;
Send request (Kk, REL); // client requests server to release itsforks
Receivereply [K] (); // client receives acknowledgement from the server
Until death
End

5.USING REMOTE PROCEDURE CALL

In a truly distributed computing environment, processes residing in different address
spaces may communicate. The remote procedure cdl (RPC) abstraction dlows for
inter-process communicationviaremote procedure cals. Inthis technique, distributed program
modulesconsst of exportable operations (calable from other modules), loca operations, and
other active processes. For each remote procedure cal anew server processiscreated in the
caled module. Parameters are passed between the caling and caled modules usng impliat
message passing. The caling process ddays until the remote call is serviced and acknowledged
by areply message. At this point the server process terminates. The sending and receiving of
parameters usng message passing are impliat (that is, no need to explicitly program the
message passing). Processesingde the module may execute concurrently and sharevariables.
Thisreguires explicit programming of the mutua exclusion and synchronization aspects. Thus,
the module design might get quite complex unlike the case of monitor design. What followsis
an RPC-based solution to the DPP.

/IDPP solution based on RPC

Module Dining_table
Begin

Operation get_forks (int); // exportable operation
Operation rel_forks (int); // exportable operation

108

CCSC: South Centra Conference

Boolean eating[5] = {fdse, fase, fase, fase, faseg};
Semaphore mutex; // for mutually exclusive access to edting array

Queue WQ; // queue of waiting clients
Semaphore MQ = 1, // for mutualy exclusive access to WQ queue

Procedure get_forks (int k)
Begin
P(mutex);
If (NOT eating[k] && NOT esting[(k+1) mod 5])
{ eating[K] = true; V(mutex); }
else
{ PIMQ); Enqueug(WQ, k); V(MQ); V(mutex); }
End

Procedure rel_forks(int k)
Begin
P(mutex);
Eating[k] =fase;
V (mutex);
Assign_ForksTo_A_Waiting_Client();//assumed procedure inside this module
End

End // Dining_Table module

Process Philosopher [k=0 to 4] // the five clients
Begin
Do
Think;
CALL Dining_Tableget forks(k); // client does RPC to acquire forks
Eat spaghetti;
CALL Dining_Tablerelease forks(k); // client does RPC to release forks
Until death
End

6. USING RENDEZVOUS

Rendezvous provides implicit communicationand synchronizationthus greetly smplifying
the design of digtributed modules. Smilar to an RPC module, we define exportable operations
indde the rendezvous module. A dient process can cal an exportable operation of a remote
module by aremote call. Unlikethe case of RPC, here we do not create anew server process.
Instead an exising server process of the remote module actually waits for, accepts, and
executes indances of remote cals. Remote operations are executed one at a time.
Synchronization is achieved by specifying condition expressions as part of the cal-accepting
step. We say that the server process of the called module performs a rendezvous with the
caling process by executing an accept statement for a specific operation. A solution based on
rendezvous follows:

/I DPP solution based on rendezvous

Module Dining_Table

109

JCSC 18, 4 (April 2003)

Operation get_forks (int); // exportable operations
Operation rel_forks (int); // exportable operations

Process Table Waiter // active server process
Begin
Boolean eating[5] = { false, fdse, fdse, fase, fdse};
DO
Sdlect
Accept get_forks(k) && NOT eating[k] && NOT eating[(k+1) mod 5] // rendezvous
-> eating[k]=trug;
OR
Accept rel_forks(k) -> eating[K] = fase; // rendezvous point
End Sdect;
UNTIL (true);
End Table Waiter
End // Dining_Table module

/Il code for client processes are Similar to that given in RPC example

7. CONCLUSIONS

In this paper we have consdered many of the basc principles behind
concurrent/distributed computing and discussed how to gpply theminthe context of the dining
philosophers problem. Thiskind of "sngle stop shopping” approach often expeditesthe learning
process by seeing dl of the different techniques with a single example. We encourage the
readers to subgtitute the DPP with other practical problems, like bounded-buffer problem,
readers-writers problem, and resource sharing problem. To amplify the presentation, we have
used pseudo-code to illustrate the programs/procedures without the language or tool-specific
detailg/syntax.

REFERENCES

1. Andrews, G. R., Foundations of Multithreaded, Parallel, and Distributed
Programming, Addison-Wesley, 2000.

2. Chandy, K. M., Misra, J., Parallel Program Design: A Foundation, Addison-Wedey,
1988.

3. Dijkstra, E. W., Cooperating sequential processes, in Programming Languages,
Academic Press, 1968.

4. Nutt, G., Operating Systems. A Modern Perspective, Addison-Wesey, 1990.

110

