
* Copyright © 2003 by the Consortium for Computing in Small Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing in Small Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

104

CONCURRENT/DISTRIBUTED PROGRAMMING

ILLUSTRATED USING THE DINING PHILOSOPHERS

PROBLEM*

S. Krishnaprasad
Mathematical, Computing, and Information Sciences

Jacksonville State University
Jacksonville, AL 36265

Email: skp@jsucc.jsu.edu

ABSTRACT

Many paradigms and techniques of distributed computing and concurrent processing
have matured and are popular. A quick and effective way to assimilate the basics
of these principles is to illustrate them using a single but simple example, avoiding
language-specific and tool-specific details and syntax. In this paper we consider the
famous dining philosophers problem and indicate several solutions to it based on the
various concurrent/distributed computing concepts.

1. INTRODUCTION

Advances in hardware, networking, and software have led to widespread use of
concurrent and distributed processing techniques. Since many of these technologies have
matured it is important for software professionals and computer science students to have basic
understanding of these techniques. One of the ways to learn about a variety of techniques is to
see them all in a given context. We may consider this as a "one stop shopping" approach of
presenting the concepts. In concurrent and distributed computing the following are popular and
mature techniques for synchronization and mutual exclusion: semaphores, monitors, message
passing, remote procedure call and rendezvous. An excellent introduction and discussion of

CCSC: South Central Conference

105

these topics can be found in the text by Andrews [1]. The intricacies of these methods can be
quickly assimilated if they are all presented with a single application example. In this paper we
illustrate these techniques as applied to the dining philosophers problem.

The dining philosophers problem (DPP) [4] is one of the popular examples used in
operating systems course to illustrate the basic concepts of mutual exclusion, synchronization,
and deadlock. This problem was first introduced by Dijkstra [3] in which five philosophers are
seated around a dinner table. In front of each philosopher is a plate of spaghetti. A philosopher
needs two forks (left and right) to eat. But there are only five forks on the table placed in
between each of the five plates. Each philosopher can only do two things: think or eat. No forks
are needed for thinking. A philosopher has to acquire both the forks before the eating process.
After finishing eating, a philosopher places forks back on the table and resumes thinking. Note
that at most two philosophers may eat concurrently. Chandy and Misra [2] have a given more
formal treatment of this problem.

Section 2 illustrates a solution to the DPP using semaphores and section 3 shows a
solution based on monitors. A solution based on message passing paradigm is presented in
section 4. Section 5 shows how to use remote procedure call technique to implement the DPP.
Finally, section 6 presents a solution based on the rendezvous method. Conclusions follow in
section 7. We highly recommend the book by Andrews [1] for the detailed and lucid exposition
of the concepts and techniques related to multithreaded, parallel, and distributed computing.

2. USING SEMAPHORES

Semaphore is a kind of shared variable which is manipulated by two special operations
known as P and V. Semaphore variables assume non-negative integer values. Suppose x is a
semaphore variable. Then, the operation V(x) increments the value of x by one atomically. P(x)
operation, also executed atomically, has the following effect: the process executing the P(x)
operation waits until the value of x is positive; then it decrements x by one and continues.
Semaphore is an important low-level abstraction to implement mutual exclusion and
synchronization amongst concurrent processes.

In the DPP each fork is a shared resource. We may represent the forks by an array of five
semaphores. Acquiring a fork uses a P operation and releasing a fork uses a V operation on
appropriate semaphores. Philosophers 0 to 3 grab the left fork first and then the right fork.
Philosopher 4 grabs the right fork first and then the left fork. This is done to avoid deadlock.
The necessary mutual exclusion and synchronization actions based on semaphores are shown
in the following solution:

// DPP solution based on semaphores

Semaphore fork[5] = { 1, 1,1 ,1, 1};
// an array of five semaphore variables, all initialized to 1

process philosopher [k = 0 to 3] // concurrent processes of first four philosophers
Begin
 Do

JCSC 18, 4 (April 2003)

106

 Think;
 //now hungry, ready to eat
 P(fork[k]); // grab the left fork
 P(fork[k+1]); // grab the right fork
 Eat the spaghetti;
 V(fork[k]); // release the left fork
 V(fork[k+1]); //release the right fork
 Until death
End

 process philosopher [4] // concurrent process of the last philosopher
 Begin
 Do
 Think;
 //now hungry, ready to eat
 P(fork[0]); // grab the right fork
 P(fork[4]); // grab the left fork
 Eat the spaghetti;
 V(fork[0]); // release the right fork
 V(fork[4]); //release the left fork
 Until death

End

3. USING MONITORS

Monitors are class-like abstractions used to encapsulate shared data and a set of
operations (procedures) to manipulate those data. Procedures inside a monitor are executed
mutually exclusively. Thus, when concurrent processes access monitor's procedures, mutual
exclusion is implicitly guaranteed. But, condition synchronization need to be explicitly
programmed inside the monitor using condition variables. A condition variable is used to delay
a process until some monitor's state is met at which time the waiting process will be awakened.
Typically a queue of waiting processes is associated with each condition variable. Primitives
like wait() and signal() are used for coding synchronization aspects. A monitor-based solution
for the DPP follows:
// DPP solution based on monitors
Monitor Dining_Controller

Begin
 Cond ForkReady[5]; // condition variables for synchronization
 Boolean Fork[5] = {true, true, true, true, true}; // availability status of each fork

 Procedure get _forks (pid) // pid is the philosopher id #: 0 to 4
 Begin
 int left = pid; int right = (pid +1) mod 5;
 //grant the left fork
 if (NOT Fork[left]) wait(ForkReady[left]); // enqueue in the condition variable queue
 Fork[left] = false;
 //grant the right fork
 if (NOT Fork[right]) wait(ForkReady[right]); // enqueue in the condition variable queue
 Fork[right] = false;
 End

CCSC: South Central Conference

107

Procedure release_forks(pid)
Begin
 int left = pid; int right = (pid +1) mod 5;
 // release the left fork
 if (Empty(ForkReady[left])) // no one is waiting for this fork
 Fork[left] = true;
 else
 Signal (ForkReady[left]); // awaken a process waiting on this fork
// release the right fork
if (Empty(ForkReady[right])) // no one is waiting for this fork
 Fork[right] = true;
else
 Signal (ForkReady[right]); // awaken a process waiting on this fork

 End

End // Dining_Controller monitor

Process Philosopher [k=0 to 4] // the five philosopher clients
 Begin
 Do
 Think;
 Dining_Controller.get_forks(k); // client requests for forks via the monitor
 Eat spaghetti;
 Dining_Controller.release_forks(k); // client releases its forks via the monitor
 Until death
 End

4. USING MESSAGE PASSING

In loosely coupled multiprocessing systems and distributed systems, processes
communicate using explicit message passing via a communication network. A channel
abstraction is employed to provide this communication path between processes. A channel
represents a queue of messages that have been sent but not yet received. A process sends a
message to a channel using a send primitive: send channel_ID (parameter list). A process
receives a message from a channel using a receive primitive: receive channel_ID (parameter
list). A message typically includes client ID, the kind of operation being requested, and any
parameters/results. A solution for DPP using message passing is given next.
// DPP solution based on message passing

Type op_kind enum (ACQ, REL); // two kinds of operations: acquire and release forks
Channel request (int cid, op_kind kind); // request channel
Channel reply[5](); // an array of five reply channels

Process Dining_Server
 Begin
 Boolean fork[5] = {true, true, true, true, true}; // indicates fork availability
 Queue WQ; // queue for clients waiting on forks
 int left, right, cid; op_kind kind;
 DO
 Receive request (cid, kind); // server receives client request via message passing
 left = cid; right = (cid +1) mod 5;

JCSC 18, 4 (April 2003)

108

 If (kind == ACQ) // requested operation is acquire forks
 If (fork[left] && fork[right])
 Send reply[cid] (); // server informs client via message passing
 Else
 Enqueue(WQ, cid); // put the client in queue until forks are available
 Else // requested operation is release forks
 {
 fork[left] = true; fork[right] = true;
 Send reply[cid] (); // server acknowledges client via message passing
 Assign_Forks_To_A_Waiting_Client()://assumed procedure in the server
 }
 WHILE (true);
 End // Dining_Server

Process Philosopher [k=0 to 4] // the five clients
 Begin
 Do
 Think;
 Send request (k, ACQ); // client requests for forks from the server via message passing
 Receive reply[k] (); // client receives acknowledgement from the server via message passing
 Eat spaghetti;
 Send request (k, REL); // client requests server to release its forks
 Receive reply [k] (); // client receives acknowledgement from the server
 Until death
 End

5. USING REMOTE PROCEDURE CALL

In a truly distributed computing environment, processes residing in different address
spaces may communicate. The remote procedure call (RPC) abstraction allows for
inter-process communication via remote procedure calls. In this technique, distributed program
modules consist of exportable operations (callable from other modules), local operations, and
other active processes. For each remote procedure call a new server process is created in the
called module. Parameters are passed between the calling and called modules using implicit
message passing. The calling process delays until the remote call is serviced and acknowledged
by a reply message. At this point the server process terminates. The sending and receiving of
parameters using message passing are implicit (that is, no need to explicitly program the
message passing). Processes inside the module may execute concurrently and share variables.
This requires explicit programming of the mutual exclusion and synchronization aspects. Thus,
the module design might get quite complex unlike the case of monitor design. What follows is
an RPC-based solution to the DPP.
//DPP solution based on RPC

Module Dining_table
Begin

 Operation get_forks (int); // exportable operation
 Operation rel_forks (int); // exportable operation

CCSC: South Central Conference

109

 Boolean eating[5] = {false, false, false, false, false};
 Semaphore mutex; // for mutually exclusive access to eating array

 Queue WQ; // queue of waiting clients
 Semaphore MQ = 1; // for mutually exclusive access to WQ queue

 Procedure get_forks (int k)
 Begin
 P(mutex);
 If (NOT eating[k] && NOT eating[(k+1) mod 5])
 { eating[k] = true; V(mutex); }
 else
 { P(MQ); Enqueue(WQ, k); V(MQ); V(mutex); }
 End

 Procedure rel_forks(int k)
 Begin
 P(mutex);
 Eating[k] = false;
 V(mutex);
 Assign_Forks-To_A_Waiting_Client();//assumed procedure inside this module
 End

End // Dining_Table module

Process Philosopher [k=0 to 4] // the five clients
 Begin
 Do
 Think;
 CALL Dining_Table.get_forks(k); // client does RPC to acquire forks
 Eat spaghetti;
 CALL Dining_Table.release_forks(k); // client does RPC to release forks
 Until death
 End

6. USING RENDEZVOUS

Rendezvous provides implicit communication and synchronization thus greatly simplifying
the design of distributed modules. Similar to an RPC module, we define exportable operations
inside the rendezvous module. A client process can call an exportable operation of a remote
module by a remote call. Unlike the case of RPC, here we do not create a new server process.
Instead an existing server process of the remote module actually waits for, accepts, and
executes instances of remote calls. Remote operations are executed one at a time.
Synchronization is achieved by specifying condition expressions as part of the call-accepting
step. We say that the server process of the called module performs a rendezvous with the
calling process by executing an accept statement for a specific operation. A solution based on
rendezvous follows:
// DPP solution based on rendezvous

Module Dining_Table

JCSC 18, 4 (April 2003)

110

 Operation get_forks (int); // exportable operations
 Operation rel_forks (int); // exportable operations

 Process Table_Waiter // active server process
 Begin
 Boolean eating[5] = { false, false, false, false, false };
 DO
 Select
 Accept get_forks(k) && NOT eating[k] && NOT eating[(k+1) mod 5] // rendezvous
-> eating[k]=true;
 OR
 Accept rel_forks(k) -> eating[k] = false; // rendezvous point
 End Select;
 UNTIL (true);
 End Table_Waiter
End // Dining_Table module

// code for client processes are similar to that given in RPC example

7. CONCLUSIONS

In this paper we have considered many of the basic principles behind
concurrent/distributed computing and discussed how to apply them in the context of the dining
philosophers problem. This kind of "single stop shopping" approach often expedites the learning
process by seeing all of the different techniques with a single example. We encourage the
readers to substitute the DPP with other practical problems, like bounded-buffer problem,
readers-writers problem, and resource sharing problem. To simplify the presentation, we have
used pseudo-code to illustrate the programs/procedures without the language or tool-specific
details/syntax.

REFERENCES

 1. Andrews, G. R., Foundations of Multithreaded, Parallel, and Distributed
Programming, Addison-Wesley, 2000.

 2. Chandy, K. M., Misra, J., Parallel Program Design: A Foundation, Addison-Wesley,
1988.

 3. Dijkstra, E. W., Cooperating sequential processes, in Programming Languages,
Academic Press, 1968.

 4. Nutt, G., Operating Systems: A Modern Perspective, Addison-Wesley, 1990.

