
page 28

Semaphores

Dekker’s algorithm solves the mutual exclusion
problem on a shared memory machine with no support
from the hardware or software. Semaphores are a higher
level concept than atomic instructions. They are atomic
actions and usually implemented within the operating
system.

A semaphore S is a non-negative integer variable
that has exactly two operations defined for it.

P(S) If S > 0 then S = S-1, otherwise suspend the
process.

V(S) If there are processes suspended on this
semaphore wake one of them, else S = S + 1.

An important point is that V(S), as it is currently
defined, does not specify which of the suspended
processes to wake.

Semaphore Invariants

The following invariants are true for semaphores.

S ≥ 0

S = S0 + #V - #P

where S0 is the initial value of semaphore S.

page 29

Mutual Exclusion

sem mutex := 1
const N := 20

process p(i := 1 to N)
do true ->

Non_critical_Section
P(mutex)
Critical_Section
V(mutex)

od
end

Theorem Mutual exclusion is satisfied.

Proof: Let #CS be the number of processes in their
critical sections. We need to prove that the following is
an invariant.

#CS + mutex = 1

i) #CS = #P - #V ;from the program structure

ii) mutex = 1 + #V - #P ;semaphore invariant

iii) mutex = 1 - #CS ;from i) and ii)

iv) #CS + mutex = 1 ; from iii)

QED

page 30

Theorem The program cannot deadlock.

Proof: This would require all processes to be
suspended in their P(mutex) operations. Then mutex = 0
and #CS = 0 since no process is in its critical section.
The critical section invariant just proven is :

#CS + mutex = 1 ⇒ 0 + 0 = 1

which is impossible.

Types of Semaphores

What we defined earlier is a general semaphore. A
binary semaphore is a semaphore that can only take the
values 0 and 1.

The choice of suspended process to wake gives the
following definition.

Blocked-set semaphore Awakens any one of the
suspended processes.

Blocked-queue semaphore The suspended processes
are kept in FIFO and are awakened in the same order
they were suspended. This is the type of semaphore
implemented in the SR language.

Busy-wait semaphore The value of the semaphore
is tested in a busy wait loop, with the test being atomic.
There may be interleavings between cycles of the loop.

page 31

Theorem With busy-wait semaphores, starvation is
possible.

Proof: Consider the following execution sequence for
2 processes.

i) P1 executes P(mutex) and enters its critical section.

ii) P2 executes P(mutex), finds mutex = 0 and loops.

iii) P1 finishes critical section, executes V(mutex) loops
back and execute P(mutex) and enters its critical
section.

iv) P2 test mutex, finds mutex = 0, and loops.

Theorem With blocked-queue semaphores, starvation is
impossible.

Proof: If P1 is blocked on mutex there will be at most
N-1 processes ahead of P1 in the queue. Therefore after
N-1 V(mutex) P1 will enter its critical section.

Theorem With blocked-set semaphores, starvation is
possible for N ≥ 3.

Proof: If there are 3 processes it is possible to
construct an execution sequence such that there are
always 2 processes blocked on a semaphore. V(mutex) is

page 32

required to only wake one of them, so it could always
ignore one and leave that process starved.

The Producer-Consumer Problem

This type of problem has two types of processes:

Producers processes that, due to some internal
activity, produce data to be sent to
consumers.

Consumers processes that on receipt of a data element
consume the data in some internal
computation.

We could connect these processes in a synchronous
manner, such that data is only transmitted when a
producer is ready to send it and a consumer is ready to
receive it. A more flexible method is to connect the
producers and the consumers by a buffer which is a
queue.

If this was an infinite buffer (wow!) then the
following invariants should hold true for the buffer.

#elements ≥ 0

#elements = 0 + in_pointer - out_pointer

These invariants are exactly the same as the
semaphore invariants with a semaphore called elements
and an initial value 0.

page 33

var buffer [?]:int
var in_pointer:int := 0, out_pointer:int := 0
sem elements := 0

process producer
do true ->

buffer [in_pointer] := produce ()
in_pointer := in_pointer + 1
V(elements)

od
end

process consumer
var i:int

do true ->
P (elements)
i := buffer [out_pointer]
out_pointer := out_pointer + 1
consume (i)

end

This can be modified for real bounded circular
buffers by using another semaphore to count the empty
places in the buffer.

As an exercise prove the following:

(i) the program cannot deadlock, (ii) neither process is
starved and (iii) the program never removes data from an
empty buffer or appends data to a full buffer.

page 34

const N := 100
var buffer [N]:int
var in_pointer:int := 0, out_pointer:int := 0
sem elements := 0
sem spaces := N

process producer
var i:int

do true ->
i := produce ()
P (spaces)
buffer [in_pointer] := i
in_pointer := (in_pointer + 1) mod N
V (elements)

od
end

process consumer
var i:int

do true ->
P (elements)
i := buffer [out_pointer]
out_pointer := (out_pointer + 1) mod N
V (spaces)
consume (i)

end

page 35

The Dining Philosophers Problem

The Problem

An institution hires five philosophers to solve a very
difficult problem. Each philosopher only engages in two
activities - thinking and eating. Meals are taken in the
diningroom which has a table set with five plates and
five forks. In the centre of the table is a bowl of spaghetti
that is endlessly replenished. The philosophers, not being
the most dextrous of individuals, requires two forks to
eat; and may only pick up the forks immediately to his
left and right.

For this system to operate correctly it is required
that:

a) A philosopher eats only if he has two forks.

b) No two philosophers can hold the same fork
simultaneously.

page 36

c) No deadlock.

d) No individual starvation.

e) Efficient behaviour under the absence of contention.

This problem is a generalisation of multiple
processes accessing a set of shared resources; e.g. a
network of computers accessing a bank of printers.

First Attempted Solution

Model each fork as a semaphore. Then each
philosopher must wait (execute a P operation) on both
the left and right forks before eating.

sem fork [5] := ([5] 1)
process philosopher (i := 1 to 5)

do true ->
Think ()
P(fork [i])
P(fork [(i+1) mod 5]
Eat ()
V(fork [i])
V(fork [(i+1) mod 5]

od
end

page 37

This is called a symmetric solution since each task is
identical. Symmetric solutions have many advantages,
particularly when it comes to load-balancing.

We can prove that no fork is ever held by two
philosophers since Eat () is the critical section of each
fork. If #Pi is the number of philosophers holding fork i
then we have:

()Fork i Pi+ =# 1

Since a semaphore is non-negative then #Pi ≤ 1.

However, this system can deadlock under an
interleaving in which all five philosophers pick up their
left forks together; i.e. all processes execute P(fork [i])
before P(fork [(i+1) mod 5]. There are two solutions.
One is to make one of the philosophers pick up the right
fork before the left fork (asymmetric solution); the other
is to only allow four philosophers into the room at any
one time.

A Symmetric Solution

sem Room := 4
sem fork [5] := ([5] 1)

page 38

process philosopher (i := 1 to 5)
do true ->

Think ()
P (Room)
P(fork [i])
P(fork [(i+1) mod 5]
Eat ()
V(fork [i])
V(fork [(i+1) mod 5]
V (Room)

od
end

This solves the deadlock problem.

Theorem Individual starvation cannot occur.

Proof For a process to starve it must be forever
blocked on one of the three semaphores, Room, fork [i]
or fork [(i+1) mod 5].

Room semaphore

If the semaphore is a blocked-queue semaphore then
process i is blocked only if Room is 0 indefinitely. This
would require the other four philosophers to be blocked
on their left forks, since if one of them can get two forks
he will finish, put down the forks and signal Room (
V(Room)). So this case will follow from the fork [i]
case.

page 39

fork [i]

If philosopher i is blocked on his left fork, then
philosopher i-1 must be hold his right fork. Therefore he
is either eating or signalling he is finished with his left
fork, and will eventually put down his right fork which is
philosopher i’ s left fork.

fork [(i+1) mod 5]

If philosopher i is block on his right fork, this means
that philosopher (i+1) has taken his left fork and never
released it. Since eating and signalling cannot block,
philosopher (i+1) must be waiting for his right fork, and
must all the other philosophers by induction: i+ j, 0≤j≤4.
However the Room semaphore invariant only 4
philosophers can be in the room, so philosopher i cannot
be blocked on his right fork.

Readers-Writers Problem

The Problem

Two kinds of processes, readers and writers, share a
database. Readers execute transactions that examine the
database, writers execute transactions that examine and
update the database. Given that the database is initially
consistent, then to ensure that the database remains
consistent, a writer process must have exclusive access to

page 40

the database. Any number of readers may concurrently
examine the database.

Obviously, as far as a writer process is concerned,
updating the database is a critical section that cannot be
interleaved with any other process.

const M:int := 20, N:int := 5
var nr:int :=0
sem mutexR := 1
sem rw := 1

process reader (i:= 1 to M)
do true ->

P (mutexR)
nr := nr + 1
if nr = 1 -> P (rw) fi
V (mutexR)
Read_Database ()
P (mutexR)
nr := nr - 1
if nr = 0 -> V (rw) fi
V (mutexR)

od
end

page 41

process writer (i:= 1 to N)
do true ->

P (rw)
Update_Database ()
V (rw)

od
end

This is called the readers’ preference solution since
if some reader process is accessing the database and a
reader process and a writer process arrive at their entry
protocols then the reader process will always have
preference over the writer process.

This is not a fair solution since this solution always
gives readers precedence over writers, a continual stream
of readers will block any writer process from updating
the database.

To make the solution fair we need to use a split
binary semaphore, that is several semaphores who
together have the property that their sum is 0 or 1. We
also need to count the number of suspended reader
processes and suspended writer processes.

This technique is called passing the baton.

page 42

const M:int := 20, N:int := 5
var nr:int :=0, nw:int := 0
var sr:int := 0, sw:int := 0 # count of suspended

readers and writers
sem e := 1, r := 0, w := 0 # 0 ≤ (e+r+w) ≤ 1

process reader (i:= 1 to M)
do true ->

P (e)
if nw > 0 ->

sr:= sr + 1; V (e); P (r)
fi
nr := nr + 1
if sr > 0 ->

sr := sr - 1; V (r)
[] sr = 0 -> V(e)
fi

Read_Database ()

P (e)
nr := nr - 1
if nr = 0 and sw > 0 -> sw := sw - 1; V (w)
[] nr >0 or sw = 0 -> V (e)
fi

od
end

page 43

process writer (i:= 1 to N)
do true ->

P (e)
if nr > 0 or nw > 0 ->

sw := sw + 1; V (e); P (w)
fi
nw := nw + 1
V (e)

Update_Database ()

P (e)
nw := nw - 1
if sr > 0 -> sr := sr -1; V (r)
[] sw > 0 -> sw := sw - 1; V (w)
[] sr = 0 and sw = 0 -> V(e)
fi

od
end

page 44

Monitors

The main disadvantage with semaphores is that they
are a low level programming construct. In a large project,
with many programmers, if one programmer forgets to do
V() operation on a semaphore after a critical section,
then the whole system can deadlock.

What is required is a higher level construct that
groups the responsibility for correctness into a few
modules.

Monitors are such a construct. These are an
extension of the monolithic found in operating systems.
They encapsulate a set of procedures, and the data they
operate on, into single modules, called monitors, and
guarantee that only one process can execute a procedure
in the monitor at any given time (mutual exclusion). Of
course different processes can execute procedures from
different monitors at the same time.

Condition Variables

Synchronisation is achieved by using condition
variables. These are data structures that have 3
operations defined for them.

page 45

wait (C) The process that called the monitor
containing this operation is
suspended in a FIFO queue
associated with C. Mutual exclusion
on the monitor is released.

signal (C) If the queue associated with C is
non-empty, then wake the process at
the head of the queue.

non-empty (C) Returns true if the queue associated
with C is non-empty.

If a monitor guarantees mutual exclusion, and a
process uses the signal operation and awakens another
process suspended in the monitor, is there not two
processes in the same monitor at the same time? Yes.

To solve this problem, several signalling
mechanisms can be implemented, the simplest of which
is the signal and continue mechanism. Under these rules
the procedure in the monitor that signals a condition
variable is allowed to continue to completion, so the
signal operation should be at the end of the procedure.
The process which was suspended on the condition
variable, but is now awoken, is scheduled for immediate
resumption on the exiting of the procedure which
signalled the condition variable.

page 46

Readers/Writers Problem

_monitor (RW_controller)
op request_read (), release_read ()
op request_write (), release_write ()

_body (RW_controller)
var nr:int := 0, nw:int := 0
_condvar (ok_to_read)
_condvar (ok_to_write)

_proc (request_read ())
do nw > 0 -> _wait (ok_to_read) od
nr := nr + 1

_proc_end

_proc (release_read ())
nr := nr - 1
if nr = 0 -> _signal (ok_to_write) fi

_proc_end

_proc (request_write ())
do nr > 0 or nw > 0 -> _wait (ok_to_write) od
nw := nw + 1

_proc_end

_proc (release_write ())
nw := nw -1
_signal (ok_to_write)
_signal_all (ok_to_read)

_proc_end
_monitor_end

page 47

File rw_controller.m

resource main ()
import RW_controller

process reader (i := 1 to 20)
RW_controller.request_read ()
Read_Database ()
RW_controller.release_read ()

end

process writer (i := 1 to 5)
RW_controller.request_write ()
Update_Database ()
RW_controller.release_write ()

end
end

File reader_writer.sr

Emulating Semaphores with Monitors

Both semaphores and monitors are concurrent
programming primitives of equal power. Monitors are
just a higher level construct.

_monitor semaphore
op p (), v ()

_body semaphore
var s:int := 0
_condvar (not_zero)

page 48

_proc (p ())
if s=0 -> _wait (not_zero) fi
s := s - 1

_proc_end

_proc (v ())
if _not_empty (not_zero) = true ->

_signal (not_zero)
[] else ->

s := s + 1
fi

_proc_end

_monitor_end

Emulating Monitors by Semaphores

Firstly we need blocked-queue semaphores (SR is
OK) and secondly we need to implement the signal and
continue mechanism. We do this with a variable
c_count, one semaphore, s, to ensure mutual exclusion
and another semaphore, c_semaphore, to act as the
condition variable. Then we translate _wait (s) to:

c_count := c_count + 1
V (s)
P (c_semaphore)
c_count := c_count - 1

and _signal (s) to:

if c_count > 0 -> V (c_semaphore)

page 49

[] else -> V (s)
fi

The Dining Philosophers Problem with Monitors

Using monitors yields a nice solution, since with
semaphores you cannot test two semaphores
simultaneously. The monitor solution maintains an array
fork which counts the number of free forks available to
each philosopher.

_monitor (fork_monitor)
op take_fork (i:int), release_fork (i:int)

_body (fork_monitor)
var fork [5]:int := ([5] 2)
_condvarl (ok_to_eat, 5) # define an array of

condition variables
_proc (take_fork (i))

if fork [i] != 2 -> _wait (ok_to_eat [i]) fi
fork [(i-1) mod 5] := fork [(i-1) mod 5] - 1
fork [(i+1) mod 5] := fork [(i+1) mod 5] - 1

_proc_end

_proc (release_fork (i))
fork [(i-1) mod 5] := fork [(i-1) mod 5] - 1
fork [(i+1) mod 5] := fork [(i+1) mod 5] - 1
if fork [(i+1) mod 5] = 2 ->

_signal (ok_to_eat [(i+1) mod 5])
fi

page 50

if fork [(i-1) mod 5] = 2 ->
_signal (ok_to_eat [(i-1) mod 5])

fi
_proc_end

_monitor_end

resource main ()
import fork_monitor

process philosopher (i:= 1 to 5)
do true ->

Think ()
fork_monitor.take_fork (i)
Eat ()
fork_monitor.release_fork (i)

od
end

end

Theorem Solution doesn’ t deadlock.

Proof: Let #E be the number of philosophers who are
eating, and have therefore taken both forks. Then the
following invariants are true from the program.

[]() []Non empty i i− ⇒ <ok_to_eat fork 2

[] ()fork Ei
i

= −
=
∑ 10 2

1

5

#

Deadlock implies #E=0 and all philosophers are
enqueued on ok_to_eat. If they are all enqueued then

page 51

the first equation implies []fork i∑ ≤ 5 and if no

philosopher is eating, then the second equation implies
[]fork i∑ = 10. The contradiction implies that the

solution does not deadlock.

However, individual starvation can occur. How?
What is the solution?

The Sleeping Barber Problem

This is a generalisation of rendezvous
synchronisation in client/server architectures.

Problem A small barber shop has two doors, an
entrance and an exit. Inside is a barber who spends all his
life serving customers, one at a time. When there are
none in the shop, he sleeps in his chair. If a customer
arrives and finds the barber asleep he awakens the
barber, sits in the customer’s chair and sleeps while his
hair is being cut. If a customer arrives and the barber is
busy cutting hair, the customer goes asleep in one of the
two waiting chairs. When the barber finishes cutting a
customer’s hair, he awakens the customer and holds the
exit door open for him. If there are any waiting
customers, he awakens one and waits for the customer to
sit in the customer chair, otherwise he goes to sleep.

page 52

The barber and customers are interacting processes,
and the barber shop is the monitor in which they react.

_monitor (barber_shop)
op get_haircut (), get_next_customer ()
op finish_cut ()

_body (barber_shop)
var barber:int := 0, chair:int := 0, open:int := 0
_condvar (barber_available) # when barber > 0
_condvar (chair_occupied) # when chair > 0
_condvar (door_open) # when open > 0
_condvar (customer_left) # when open = 0

called by customer
_proc (get_haircut ())

do barber = 0 -> _wait (barber_available) od
barber := barber -1
chair := chair + 1
_signal (chair_occupied)
do open = 0 -> _wait (door_open) od

waiting
customer

waiting
customer

customer

barber

entrance

exit

page 53

open := open - 1
_signal (customer_left)

_proc_end

called by barber
_proc (get_next_customer ())

barber : barber + 1
_signal (barber_available)
do chair = 0 -> _wait (chair_occupied) od
chair := chair - 1

_proc_end

#called by barber
_proc (finished_cut ())

open := open + 1
_signal (door_open)
do open > 0 -> _wait (customer_left) od

_proc_end

_monitor_end

In general, when many different processes have to
rendezvous, the solution technique is to use a monitor to
create an “environment” in which the processes can
rendezvous.

