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Abstract 

It is generally acknowledged that developing correct multi- 
threaded codes is difficult, because threads may interact with 
each other in unpredictable ways. The goal of this work is to 
discover common multi-threaded programming pitfalls, the 
knowledge of which will be useful in instructing new pro- 
grammers and in developing tools to aid in multi-threaded 
programming. To this end, we study multi-threaded appli- 
cations written by students from introductory operating sys- 
tems courses. Although the applications are simple, careful 
inspection and the use of an automatic race detection tool 
reveal a surprising quantity and variety of synchronization 
errors. We describe and discuss these errors, evaluate the 
role of automated tools, and propose new tools for use in the 
instruction of multi-threaded programming. 

1 Introduction 

Multi-threading is a powerful programming paradigm, use- 
ful in many problem domains. It is a convenient structuring 
tool for applications that are logically comprised of asyn- 
chronous components, such as windowing applications and 
operating system services. Multi-threading is also appropri- 
ate for expressing fine grain sharing such as that arising from 
data parallel computations in which threads simultaneously 
perform nearly the same computation on different data. In 
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fact, direct support for very fine grain multi-threading has 
even been implemented in hardware [1]. 

Although multi-threading provides a conceptually simple 
abstraction, in practice, multi-threaded programming is chal- 
lenging, because threads interact with each other in unpre- 
dictable ways. Multiple threads usually share data, requir- 
ing synchronization to manage their interaction. Synchro- 
nization must ensure a deterministic outcome independent of 
how threads are scheduled or how their instruction streams 
are interleaved. 

This paper describes experiences from analyzing a collection 
of simple multi-threaded programs. We evaluate 180 pro- 
grams written by students who were new to multi-threaded 
programming. We describe the common errors and discuss 
their origins. We use this catalog of errors to outline prin- 
ciples to abide by when writing multi-threaded programs. 
Finally, we discuss our experiences with Eraser [6], an au- 
tomatic, dynamic race detection tool, and the potential for 
other useful debugging tools. 

The results discussed in this paper will be of use to edu- 
cators, program developers, and tool developers. Educa- 
tors can teach common pitfalls and instill good habits for 
multi-threaded programming. Program developers can be- 
come aware of common errors and the potential causes. Tool 
developers can tailor their tools to the types of errors that oc- 
cur in practice and develop new tools for the types of errors 
we have found by manual inspection. 

This paper is organized as follows. The next section de- 
scribes our experimental context. Section 3 presents the re- 
sults of analyzing the multi-threaded applications and the 
role of Eraser in finding errors in the programs. Section 4 
describes the potential use of tools based on our experience 
with Eraser. The final section gives conclusions. 

2 Experimental Context 

In this section we describe the multi-threaded program suite 
used in this study, and we summarize the process by which 
they were evaluated by inspection and via the Eraser tool. 
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Figure 1: Structure of the CSE 451 threads project. Each 
layer builds on the layers below it. We considered codes 
the students wrote for the application and synchronization 
layers. 

2.1 Program Suite 

The evaluation program suite comes from student program- 
ming projects from three offerings of the University of Wash- 
ington introductory operating systems course (CSE 451) [2]. 
Over three quarters the course was taught by two different 
instructors with four different teaching assistants (including 
the authors), but an identical programming project was as- 
signed. The project assignments were mature and well orga- 
nized, and the students implemented their projects in the C 
programming language. 

The students were charged with writing a small user-level 
threads system and applications to exploit it. The project 
familiarized students with operating systems issues; and for 
most, it was their first encounter with threads, synchroniza- 
tion mechanisms and, often times, serious programming. 
Building upon an atomic test-and-set routine, they imple- 
mented support for thread creation, scheduling, etc., and 
they provided synchronization support via semaphores and 
mutexes with condition variables. In addition, they imple- 
mented two multi-threaded applications: a bounded buffer 
application [7, page 109] and a solution to the cigarette 
smoker problem [7, page 212]. Figure 1 summarizes the 
project's principle abstractions. Although the students im- 
plemented the top three levels, we only examined the ap- 
plication and synchronization portions of the project in this 
study. 

2.2 Inspection 

Virtually all of the programs we examined produced cor- 
rect output, but this alone did not ensure that they were cor- 
rect. The students' programs were sufficiently simple and 
short that careful inspect by an experienced programmer re- 
vealed the synchronization errors they contained. Both au- 
thors have taken and served as teaching assistant for the in- 
troductory operating systems course, so they are intimately 
familiar with the project and multi-threaded programming in 
general. Each program was independently examined twice 
to identify errors. 

2.3 Eraser 

We used Eraser to automatically evaluate the programs. 
Eraser is a tool for finding data races in Pthreads multi- 
threaded programs that synchronize via locking [6]. It dy- 
namically checks that concurrent accesses to shared data ob- 
serve a consistent locking discipline. Eraser implements the 
lock set algorithm to identify races [6]. This algorithm dy- 
namically maintains a candidate set of locks for each poten- 
tially shared word. All locks that may protect a word ap- 
pear in the word's candidate lock set. Initially, each lock set 
contains all locks. On every access to shared data, the lock 
set associated with the data is replaced by the intersection 
of itself and the locks currently held. If the candidate lock 
set ever becomes empty, a race is flagged, for the associ- 
ated data is unprotected. Eraser supports a set of program- 
mer annotations to inhibit false positives when using non- 
Pthreads synchronization mechanisms. Eraser instruments 
a program binary's loads, stores and Pthreads library calls 
using ATOM [8], a binary rewriting tool for the DEC Alpha. 

Eraser could not be directly applied to students' programs, 
because they were not Pthreads applications. We trans- 
formed them into Pthreads applications by rewriting the ab- 
stractions on which they were built in terms of Pthreads 
primitives. For example, in order to evaluate the application 
level programs with Eraser, we linked them with semaphore 
and mutex codes implemented in terms of Pthreads piSmi- 
tives. We only evaluated the application and synchronization 
level codes, because the thread system code achieved atom- 
icity via interrupt disabling, which Eraser is not equipped to 
handle. 

3 Pitfalls 

We discovered a great many synchronization errors in the 
programs we examined. In this section, we enumerate and 
discuss the errors and our experience with Eraser. 

3.1 Errors 

The errors we detected fall into one of three categories. 
They are data races, deadlock or miscellaneous, each dis- 
cussed below. We examined four applications (semaphore, 
mutex, bounded buffer, and cigarette smoker) from each of 
54 project groups (because of submission or interface prob- 
lems we only considered 180 applications, not the total 216). 
Figure 2 summarizes our findings. We discovered errors 
in 56 applications. Twenty-three contained data races, 23 
deadlocked and 28 exhibited miscellaneous synchronization 
problems. 

Data Races. A data race condition exists when multiple 
entities (in this case threads) concurrently read and write the 
same data, and the outcome of the execution depends on the 
particular order in which the accesses take place [7, page 
165]. The entities must synchronize to avoid race conditions. 
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II 56 of 180 23 2'3 28 [ 4 [ 

Figure 2: Summary of errors. A total of 180 programs were 
examined. Some programs had more than one type of er- 
ror." Multiple instances of a single type of error in a single 
application were counted once. 

We discovered 23 data races, most of which were benign. 

Nine of the data races we discovered were benign, because 
reads and writes of integers were atomic on the students' 
hardware platform. Some students did not use locks when 
reading shared integers. Furthermore, some did not protect 
writes of shared integers when there was only a single writer. 
We do not recommend that beginning multi-threaded pro- 
grammers make such atomicity assumptions. 

The remaining data races effected correctness. (/) The most 
obvious source of a data race was when a shared variable 
was not protected by a lock. It appeared that some stu- 
dents were confused about what data was shared. Nine pro- 
grams suffered from this problem. (ii) Similarly, data races 
arose when a lock was not acquired to protect an access even 
though one existed. Most frequently this happened when a 
lock was acquired outside a loop, but released within. Three 
programs contained this error. (iii) Data races also arose 
from accidental sharing: one group made what should have 
been an automatic variable (i.e., on the stack) global, thus it 
was unintentionally shared by all threads without being pro- 
tected by a lock. (iv) One program prematurely released a 
lock, suggesting that the student was not entirely certain of 
what accesses needed to be protected by the lock. (v) An- 
other program contained redundant, unprotected initializa- 
tion of shared variables. (vi) One program used multiple 
locks to protect a single shared variable, but only one at a 
time. Specifically, readers and writers of a shared variable 
used different locks, thus there was no synchronization be- 
tween the two classes of threads. 

Deadlock. Deadlock occurs when a multi-threaded pro- 
gram is unable to make progress because a thread is waiting 
for a condition that will never happen. Twenty-three of the 
programs suffered from intermittent deadlock. 

Deadlock arose in 11 programs because they contained a 
non-atomic unlock-and-stop routine. This routine releases a 
lock, places the running thread on a queue, and blocks. If the 
thread is preempted between the second and third steps, an- 
other thread may reschedule the first thread before it blocks. 
In this case, the first thread runs and immediately blocks, 
never to be awakened. Deadlock also occurred in two pro- 

grams where signals were lost. This happened when one 
thread signaled a thread that had not yet issued a wait. When 
the wait is eventually issued, it is never signalled again. Both 
of these deadlock cases suggest a lack of understanding of 
some of the more subtle issues of  multi-threading and the 
implications of preemption. 

Deadlock also arose in two programs when they used an in- 
correct conditional to spin on a test-and-set lock. Deadlock 
resulted in eight programs for one of the following reasons: 
(i) unrelated locks were used to protect a single shared vari- 
able, (ii) test-and-set primitives were confused with mutexes 
at the application level, (iii) locks were not ever released, and 
(iv) threads tried to reacquire locks that they already held. 

A frequently cited example of deadlock is when there is a 
circular dependence between threads waiting for locks [3, 
5]. None of the programs exhibited this form of deadlock, 
except the trivial case when a thread attempted to acquire a 
lock it already held. We expect that circular dependences 
are more common in larger applications, but they are not a 
primary concern for beginning multi-threaded programmers. 

Miscellaneous. There were a number of  miscellaneous 
synchronization problems. Unnecessary use of  interrupt dis- 
abling and lock acquisition and release was the most com- 
mon error in this category. Fourteen programs suffered from 
this problem, suggesting that students did not have confi- 
dence in their use of  locks, so they tried to patch up the code 
(and make it correct) by disabling interrupts. It also suggests 
an unsophisticated understanding of locking. This approach 
never corrected any problems and was even found in appli- 
cations that were otherwise correct. 

Another problem was the use of a single global lock to pro- 
tect all shared data. Four programs contained this prob- 
lem. We suspect that this comes from more than just lazi- 
ness; some students did not understand that only related data 
should be protected under one lock. This is often a benign 
problem, but it can lead to lock contention. The remaining 
10 errors were due to inappropriate locking: (/) assuming 
that the unlock-and-stop routine returns with the test-and-set 
lock re-acquired and (ii) needlessly unlocking the same lock 
repeatedly. 

3.2 Experience with Eraser 

When Eraser was applied to the program suite, it detected 27 
races, 23 of which we have already discussed, above. The 
remaining four were false positives. Three programs im- 
plicitly "pass" a lock from one thread to another. In other 
words, the thread that acquires the lock does not release 
it with the understanding that another thread will proceed 
assuming that it has the lock. The second thread may re- 
lease the lock or pass it to another thread. Birrell recom- 
mends that lock passing never be used due to the difficulty 
of verifying the correctness of such code [3]. On the other 
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hand, lock passing reduces the number of calls into the lock- 
ing routines, which indirectly reduces the amount of work 
the thread scheduler performs. Moreover, if lock passing 
is used exclusively, an application can affectively take con- 
trol of thread scheduling. Obviously this is not a synchro- 
nization mechanism for the naive, but if Eraser understands 
such a synchronization mechanism, it may prove useful for 
more advanced programmers who are concerned about per- 
formance. A straightforward use of the E r a s e r W r i t e -  
Lock and EraserWriteUnlock annotations will tell the 
Eraser runtime system the point at which a thread no longer 
assumes ownership of the lock (effectively releasing it) as 
well as the dual for the thread that receives the lock (effec- 
tively acquiring the lock). 

A false race was also reported when threads accessed a cir- 
cular buffer through protected "front" and "back" pointers 
into the buffer. This is not a race because the buffer is only 
accessed through the "front" or "back" pointers. Savage et 
al. describe a similar false positive, which they eliminate via 
the E r a s e r R e u s e  annotation [6]. We can do the same. 

An unintended side effect of running an Eraser instrumented 
binary is that the instrumentation changes the timing char- 
acteristics of  the program. This alone exposed deadlock in 
a great many programs that consistently ran to completion 
without instrumentation. 

3.3 Discussion 

Eraser was enormously useful in this study. Even in these 
simple codes errors were common and tedious to find man- 
ually. The students generally believed their codes were cor- 
rect, and the teaching assistants often did not find the errors, 
because there was no feedback suggesting that an error ex- 
isted. Eraser's primary value was in discovering races even 
when a particular thread scheduling did not reveal a data 
race. Despite the simplicity of these programs, we believe 
a significant fraction of the races came from carelessness, 
which Eraser was well-equipped to uncover. Eraser's value 
in finding these errors grows with program complexity. 

Programmers may help detect other errors through the use 
of assertions. For example, if the programmers assert that 
a lock is held before it is released, they will discover cases 
where a lock is being released repeatedly. Many of the other 
errors came from a lack of understand of the issues of  multi- 
threaded programming. Eraser is still valuable, for it forces 
programmers to understand their programs well enough to 
interpret Eraser's finding and correct their errors. Without 
Eraser students are more likely to cross their fingers and hope 
their program works. 

We recommend that new programmers be aware of the roles 
of correctness and efficiency in writing multi-threaded pro- 
grams. Birrell advises first developing a correct solntion 
which may later be optimized, rather than developing an 0p- 
timized solution which may later be made correct [3]. Once 

correctness is achieved, refinement can begin if performance 
studies suggest that it is necessary. Performance studies 
should be used throughout the refinement process to vali- 
date the refinement's value. A programmer should not ob- 
fuscate the code without benefit. We recommend instructors 
preach this philosophy, for even the more advanced students 
frequently got burned by their own cleverness. We also rec- 
ommend that instructors teach mistakes, including the ones 
presented in this paper. Teaching students the common mis- 
takes can drastically shrink the space of potential errors. 

4 Potential for Tools 

Eraser was useful for analyzing the applications in the previ- 
ous section, but it is limited to detecting data races in codes 
that synchronize with locks. In this section, we propose other 
useful tools and discuss the current status of  existing tools for 
debugging multi-threaded applications. 

4.1 Other Useful Tools 

This section propose three other useful tools for multi- 
threaded program debugging. 

Supporting other synchronization. Eraser's generality is 
limited by the fact that it only considers synchronization by 
locking. Multi-threaded parallel scientific codes often use 
more global forms of synchronization such as barrier syn- 
chronization, where all threads rendezvous at a specified pro- 
gram point, and restricted fork-join, where a single thread 
forks many threads that run to completion after which con- 
trol is returned to a single thread. An important observation 
in both cases is that accesses to shared data in one context 
(between successive barriers or after forking threads but be- 
fore joining) do not conflict with accesses in another con- 
text. Eraser can be extended to handle such synchroniza- 
tion by resetting the global state (lock sets and data states) at 
each barrier or fork. One implication of this approach is that 
shared data may be protected by different locks in different 
contexts. This may have stylistic problems, but it will still 
prevent races. 

Deadlock detection. A common cause of deadlock in 
complex applications is a circular dependence of threads 
waiting for resources. Deadlock can often be detected by the 
programmer because the program ceases to make progress. 
Nevertheless, finding the cause of deadlock is difficult. A 
tool to aid in deadlock detection caused by circular de- 
pendences can be implemented using a waits-for graph of 
threads waiting for locks; a cycle in the graph indicates 
that deadlock has occurred. Deadlock conditions caused by 
thread scheduling errors can be detected when no threads are 
available on the thread system's ready queue; when this sit- 
uation is detected, the condition variables can be scanned to 
identify waiting threads. Notice that unlike with races, these 
approaches are not guaranteed to detect all potential dead- 
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lock situations. Changing a program's timing characteristics 
or forcing frequent context switches can increase the proba- 
bility of exposing deadlock situations. 

Performance debugging. Performance debugging in 
multi-threaded programs is perhaps as difficult as debugging 
for correctness. Sharing is the primary source of unexpected 
performance degradation in multi-threaded programs. 
Statistics such as the average number of threads waiting 
for a lock and the number of times a lock is acquired can 
be used to identify critical sections of code that should 
be optimized. On machines with multiple processors that 
implement shared memory, data locality also contributes 
significantly to poor performance. Information about the 
physical location of the threads that use a lock and the shared 
data accessed can also be used to pinpoint performance 
bottlenecks. 

4.2 Current Status of Tools 

Visual Threads [4] is a diagnostic tool for multi-threaded ap- 
plications that implements Eraser's race detection algorithm, 
as well as deadlock detection and performance statistics. The 
tool includes many of the feature discussed above, yet it 
is not a viable solution for the classroom. Visual Threads 
is only available for systems running Digital UNIX on Al- 
pha processors, considered a high-end system for most con- 
sumers especially educational institutions. 

The difficulty with making such tools widely available is that 
they typically require binary instrumentation which is archi- 
tecture specific by nature. A slightly less general approach is 
to provide a library of data types and synchronization mech- 
anisms that have already been instrumented. For example, 
the SMARTS library [9], a C++ class library for parallel 
programming, implements Eraser's race detection algorithm 
for its data objects. Shared data objects inherit from the 
base class which provides explicit read and write methods 
that modify the lock set if race detection is enabled. The 
library also provides synchronization mechanisms that are 
aware of the race detector. This approach is very attractive 
for the classroom setting because it is portable, inexpensive, 
and reusable. Moreover, most project courses such as those 
described in the previous sections already have a software 
base, and thus the cost of implementing the tools is amor- 
tized across subsequent offerings of the course. 

5 Conclusion 

Multi-threading is a popular programming paradigm used in 
a variety of domains. The catalog of common errors pre- 
sented in this paper shows that new programmers make syn- 
chronization errors even in programs with very simple spec- 
ifications. The students often lacked the experience and the 
teaching assistants lacked the time to identify subtle synchro- 
nization errors in programs that only failed under certain rare 
thread schedules. In fact, most programmers of erroneous 

code believed i t  was correct, for they did not get feedback 
suggesting otherwise. It is our hope that the pitfalls pre- 
sented in this paper will serve as a guide so that students 
may avoid these mistakes. Furthermore, we encourage in- 
structors to advocate optimization only when correctness has 
been achieved and only when performance studies demon- 
strate significant improvement. 

Finally, we have found that automated tools, such as the 
Eraser dynamic race detector, can be a valuable resources in 
debugging multi-threaded programs. Eraser gives feedback 
for erroneous programs even if a particular thread schedule 
does not reveal it. This helps programmers identify their syn- 
chronization bugs. Furthermore, it serves as a starting point 
for reasoning about and correcting erroneous code. We be- 
lieve that there are opportunities for the development of other 
automated tools--such as those discussed in this paperm 
to assist in multi-threaded programming, particularly in the 
classroom. 
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