
A Study of Common Pitfalls in
Simple Multi-Threaded Programs

Sung-Eun Chop
Los Alamos National Laboratory
Advanced Computing Laboratory

P.O. Box 1663, MS B287
Los Alamos, NM 87545 USA

E Christopher Lewis~
Department of Computer Science & Engineering

University of Washington
Box 352350

Seattle, WA 98195-2350 USA

Abstract

It is generally acknowledged that developing correct multi-
threaded codes is difficult, because threads may interact with
each other in unpredictable ways. The goal of this work is to
discover common multi-threaded programming pitfalls, the
knowledge of which will be useful in instructing new pro-
grammers and in developing tools to aid in multi-threaded
programming. To this end, we study multi-threaded appli-
cations written by students from introductory operating sys-
tems courses. Although the applications are simple, careful
inspection and the use of an automatic race detection tool
reveal a surprising quantity and variety of synchronization
errors. We describe and discuss these errors, evaluate the
role of automated tools, and propose new tools for use in the
instruction of multi-threaded programming.

1 Introduction

Multi-threading is a powerful programming paradigm, use-
ful in many problem domains. It is a convenient structuring
tool for applications that are logically comprised of asyn-
chronous components, such as windowing applications and
operating system services. Multi-threading is also appropri-
ate for expressing fine grain sharing such as that arising from
data parallel computations in which threads simultaneously
perform nearly the same computation on different data. In

* Los Alamos National Laboratory, an affirmative action/equal
opportunity employer, is operated by the University of California
for the United States Department of Energy under contract W-7405-
ENG-36. LANL publication: LA-UR-99-6365.

t E Lewis was supported in part by a Bradley Dissertation Fel-
lowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3•00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/00/0003.. .$5.00

fact, direct support for very fine grain multi-threading has
even been implemented in hardware [1].

Although multi-threading provides a conceptually simple
abstraction, in practice, multi-threaded programming is chal-
lenging, because threads interact with each other in unpre-
dictable ways. Multiple threads usually share data, requir-
ing synchronization to manage their interaction. Synchro-
nization must ensure a deterministic outcome independent of
how threads are scheduled or how their instruction streams
are interleaved.

This paper describes experiences from analyzing a collection
of simple multi-threaded programs. We evaluate 180 pro-
grams written by students who were new to multi-threaded
programming. We describe the common errors and discuss
their origins. We use this catalog of errors to outline prin-
ciples to abide by when writing multi-threaded programs.
Finally, we discuss our experiences with Eraser [6], an au-
tomatic, dynamic race detection tool, and the potential for
other useful debugging tools.

The results discussed in this paper will be of use to edu-
cators, program developers, and tool developers. Educa-
tors can teach common pitfalls and instill good habits for
multi-threaded programming. Program developers can be-
come aware of common errors and the potential causes. Tool
developers can tailor their tools to the types of errors that oc-
cur in practice and develop new tools for the types of errors
we have found by manual inspection.

This paper is organized as follows. The next section de-
scribes our experimental context. Section 3 presents the re-
sults of analyzing the multi-threaded applications and the
role of Eraser in finding errors in the programs. Section 4
describes the potential use of tools based on our experience
with Eraser. The final section gives conclusions.

2 Experimental Context

In this section we describe the multi-threaded program suite
used in this study, and we summarize the process by which
they were evaluated by inspection and via the Eraser tool.

325

I APPUCATION LEVEl.
(bounded buffer, dgerettl moker)

SYNCHRONB.A~IOt~ LEVEL
(~ . = , mut*xu)

I THREAD SYSTEM LEVEL
(fork, ~dd, m~ st~ ~.)

I Low LEVEL
(atoml~ t.t-and-ut)

Figure 1: Structure of the CSE 451 threads project. Each
layer builds on the layers below it. We considered codes
the students wrote for the application and synchronization
layers.

2.1 Program Suite

The evaluation program suite comes from student program-
ming projects from three offerings of the University of Wash-
ington introductory operating systems course (CSE 451) [2].
Over three quarters the course was taught by two different
instructors with four different teaching assistants (including
the authors), but an identical programming project was as-
signed. The project assignments were mature and well orga-
nized, and the students implemented their projects in the C
programming language.

The students were charged with writing a small user-level
threads system and applications to exploit it. The project
familiarized students with operating systems issues; and for
most, it was their first encounter with threads, synchroniza-
tion mechanisms and, often times, serious programming.
Building upon an atomic test-and-set routine, they imple-
mented support for thread creation, scheduling, etc., and
they provided synchronization support via semaphores and
mutexes with condition variables. In addition, they imple-
mented two multi-threaded applications: a bounded buffer
application [7, page 109] and a solution to the cigarette
smoker problem [7, page 212]. Figure 1 summarizes the
project's principle abstractions. Although the students im-
plemented the top three levels, we only examined the ap-
plication and synchronization portions of the project in this
study.

2.2 Inspection

Virtually all of the programs we examined produced cor-
rect output, but this alone did not ensure that they were cor-
rect. The students' programs were sufficiently simple and
short that careful inspect by an experienced programmer re-
vealed the synchronization errors they contained. Both au-
thors have taken and served as teaching assistant for the in-
troductory operating systems course, so they are intimately
familiar with the project and multi-threaded programming in
general. Each program was independently examined twice
to identify errors.

2.3 Eraser

We used Eraser to automatically evaluate the programs.
Eraser is a tool for finding data races in Pthreads multi-
threaded programs that synchronize via locking [6]. It dy-
namically checks that concurrent accesses to shared data ob-
serve a consistent locking discipline. Eraser implements the
lock set algorithm to identify races [6]. This algorithm dy-
namically maintains a candidate set of locks for each poten-
tially shared word. All locks that may protect a word ap-
pear in the word's candidate lock set. Initially, each lock set
contains all locks. On every access to shared data, the lock
set associated with the data is replaced by the intersection
of itself and the locks currently held. If the candidate lock
set ever becomes empty, a race is flagged, for the associ-
ated data is unprotected. Eraser supports a set of program-
mer annotations to inhibit false positives when using non-
Pthreads synchronization mechanisms. Eraser instruments
a program binary's loads, stores and Pthreads library calls
using ATOM [8], a binary rewriting tool for the DEC Alpha.

Eraser could not be directly applied to students' programs,
because they were not Pthreads applications. We trans-
formed them into Pthreads applications by rewriting the ab-
stractions on which they were built in terms of Pthreads
primitives. For example, in order to evaluate the application
level programs with Eraser, we linked them with semaphore
and mutex codes implemented in terms of Pthreads piSmi-
tives. We only evaluated the application and synchronization
level codes, because the thread system code achieved atom-
icity via interrupt disabling, which Eraser is not equipped to
handle.

3 Pitfalls

We discovered a great many synchronization errors in the
programs we examined. In this section, we enumerate and
discuss the errors and our experience with Eraser.

3.1 Errors

The errors we detected fall into one of three categories.
They are data races, deadlock or miscellaneous, each dis-
cussed below. We examined four applications (semaphore,
mutex, bounded buffer, and cigarette smoker) from each of
54 project groups (because of submission or interface prob-
lems we only considered 180 applications, not the total 216).
Figure 2 summarizes our findings. We discovered errors
in 56 applications. Twenty-three contained data races, 23
deadlocked and 28 exhibited miscellaneous synchronization
problems.

Data Races. A data race condition exists when multiple
entities (in this case threads) concurrently read and write the
same data, and the outcome of the execution depends on the
particular order in which the accesses take place [7, page
165]. The entities must synchronize to avoid race conditions.

326

semaphore
mutex

bounded buf.
cig. smoker

total

p r o g r a m s d a t a d e a d - I E r a s e r l
w/errors race lock misc. false +
19of46 2 7 19 3
18 of 40 5 12 8 0
5 of 46 3 1 0 0
14of48 13 3 1 1

II 56 of 180 23 2'3 28 [4 [

Figure 2: Summary of errors. A total of 180 programs were
examined. Some programs had more than one type of er-
ror." Multiple instances of a single type of error in a single
application were counted once.

We discovered 23 data races, most of which were benign.

Nine of the data races we discovered were benign, because
reads and writes of integers were atomic on the students'
hardware platform. Some students did not use locks when
reading shared integers. Furthermore, some did not protect
writes of shared integers when there was only a single writer.
We do not recommend that beginning multi-threaded pro-
grammers make such atomicity assumptions.

The remaining data races effected correctness. (/) The most
obvious source of a data race was when a shared variable
was not protected by a lock. It appeared that some stu-
dents were confused about what data was shared. Nine pro-
grams suffered from this problem. (ii) Similarly, data races
arose when a lock was not acquired to protect an access even
though one existed. Most frequently this happened when a
lock was acquired outside a loop, but released within. Three
programs contained this error. (iii) Data races also arose
from accidental sharing: one group made what should have
been an automatic variable (i.e., on the stack) global, thus it
was unintentionally shared by all threads without being pro-
tected by a lock. (iv) One program prematurely released a
lock, suggesting that the student was not entirely certain of
what accesses needed to be protected by the lock. (v) An-
other program contained redundant, unprotected initializa-
tion of shared variables. (vi) One program used multiple
locks to protect a single shared variable, but only one at a
time. Specifically, readers and writers of a shared variable
used different locks, thus there was no synchronization be-
tween the two classes of threads.

Deadlock. Deadlock occurs when a multi-threaded pro-
gram is unable to make progress because a thread is waiting
for a condition that will never happen. Twenty-three of the
programs suffered from intermittent deadlock.

Deadlock arose in 11 programs because they contained a
non-atomic unlock-and-stop routine. This routine releases a
lock, places the running thread on a queue, and blocks. If the
thread is preempted between the second and third steps, an-
other thread may reschedule the first thread before it blocks.
In this case, the first thread runs and immediately blocks,
never to be awakened. Deadlock also occurred in two pro-

grams where signals were lost. This happened when one
thread signaled a thread that had not yet issued a wait. When
the wait is eventually issued, it is never signalled again. Both
of these deadlock cases suggest a lack of understanding of
some of the more subtle issues of multi-threading and the
implications of preemption.

Deadlock also arose in two programs when they used an in-
correct conditional to spin on a test-and-set lock. Deadlock
resulted in eight programs for one of the following reasons:
(i) unrelated locks were used to protect a single shared vari-
able, (ii) test-and-set primitives were confused with mutexes
at the application level, (iii) locks were not ever released, and
(iv) threads tried to reacquire locks that they already held.

A frequently cited example of deadlock is when there is a
circular dependence between threads waiting for locks [3,
5]. None of the programs exhibited this form of deadlock,
except the trivial case when a thread attempted to acquire a
lock it already held. We expect that circular dependences
are more common in larger applications, but they are not a
primary concern for beginning multi-threaded programmers.

Miscellaneous. There were a number of miscellaneous
synchronization problems. Unnecessary use of interrupt dis-
abling and lock acquisition and release was the most com-
mon error in this category. Fourteen programs suffered from
this problem, suggesting that students did not have confi-
dence in their use of locks, so they tried to patch up the code
(and make it correct) by disabling interrupts. It also suggests
an unsophisticated understanding of locking. This approach
never corrected any problems and was even found in appli-
cations that were otherwise correct.

Another problem was the use of a single global lock to pro-
tect all shared data. Four programs contained this prob-
lem. We suspect that this comes from more than just lazi-
ness; some students did not understand that only related data
should be protected under one lock. This is often a benign
problem, but it can lead to lock contention. The remaining
10 errors were due to inappropriate locking: (/) assuming
that the unlock-and-stop routine returns with the test-and-set
lock re-acquired and (ii) needlessly unlocking the same lock
repeatedly.

3.2 Experience with Eraser

When Eraser was applied to the program suite, it detected 27
races, 23 of which we have already discussed, above. The
remaining four were false positives. Three programs im-
plicitly "pass" a lock from one thread to another. In other
words, the thread that acquires the lock does not release
it with the understanding that another thread will proceed
assuming that it has the lock. The second thread may re-
lease the lock or pass it to another thread. Birrell recom-
mends that lock passing never be used due to the difficulty
of verifying the correctness of such code [3]. On the other

327

hand, lock passing reduces the number of calls into the lock-
ing routines, which indirectly reduces the amount of work
the thread scheduler performs. Moreover, if lock passing
is used exclusively, an application can affectively take con-
trol of thread scheduling. Obviously this is not a synchro-
nization mechanism for the naive, but if Eraser understands
such a synchronization mechanism, it may prove useful for
more advanced programmers who are concerned about per-
formance. A straightforward use of the E r a s e r W r i t e -
Lock and EraserWriteUnlock annotations will tell the
Eraser runtime system the point at which a thread no longer
assumes ownership of the lock (effectively releasing it) as
well as the dual for the thread that receives the lock (effec-
tively acquiring the lock).

A false race was also reported when threads accessed a cir-
cular buffer through protected "front" and "back" pointers
into the buffer. This is not a race because the buffer is only
accessed through the "front" or "back" pointers. Savage et
al. describe a similar false positive, which they eliminate via
the E r a s e r R e u s e annotation [6]. We can do the same.

An unintended side effect of running an Eraser instrumented
binary is that the instrumentation changes the timing char-
acteristics of the program. This alone exposed deadlock in
a great many programs that consistently ran to completion
without instrumentation.

3.3 Discussion

Eraser was enormously useful in this study. Even in these
simple codes errors were common and tedious to find man-
ually. The students generally believed their codes were cor-
rect, and the teaching assistants often did not find the errors,
because there was no feedback suggesting that an error ex-
isted. Eraser's primary value was in discovering races even
when a particular thread scheduling did not reveal a data
race. Despite the simplicity of these programs, we believe
a significant fraction of the races came from carelessness,
which Eraser was well-equipped to uncover. Eraser's value
in finding these errors grows with program complexity.

Programmers may help detect other errors through the use
of assertions. For example, if the programmers assert that
a lock is held before it is released, they will discover cases
where a lock is being released repeatedly. Many of the other
errors came from a lack of understand of the issues of multi-
threaded programming. Eraser is still valuable, for it forces
programmers to understand their programs well enough to
interpret Eraser's finding and correct their errors. Without
Eraser students are more likely to cross their fingers and hope
their program works.

We recommend that new programmers be aware of the roles
of correctness and efficiency in writing multi-threaded pro-
grams. Birrell advises first developing a correct solntion
which may later be optimized, rather than developing an 0p-
timized solution which may later be made correct [3]. Once

correctness is achieved, refinement can begin if performance
studies suggest that it is necessary. Performance studies
should be used throughout the refinement process to vali-
date the refinement's value. A programmer should not ob-
fuscate the code without benefit. We recommend instructors
preach this philosophy, for even the more advanced students
frequently got burned by their own cleverness. We also rec-
ommend that instructors teach mistakes, including the ones
presented in this paper. Teaching students the common mis-
takes can drastically shrink the space of potential errors.

4 Potential for Tools

Eraser was useful for analyzing the applications in the previ-
ous section, but it is limited to detecting data races in codes
that synchronize with locks. In this section, we propose other
useful tools and discuss the current status of existing tools for
debugging multi-threaded applications.

4.1 Other Useful Tools

This section propose three other useful tools for multi-
threaded program debugging.

Supporting other synchronization. Eraser's generality is
limited by the fact that it only considers synchronization by
locking. Multi-threaded parallel scientific codes often use
more global forms of synchronization such as barrier syn-
chronization, where all threads rendezvous at a specified pro-
gram point, and restricted fork-join, where a single thread
forks many threads that run to completion after which con-
trol is returned to a single thread. An important observation
in both cases is that accesses to shared data in one context
(between successive barriers or after forking threads but be-
fore joining) do not conflict with accesses in another con-
text. Eraser can be extended to handle such synchroniza-
tion by resetting the global state (lock sets and data states) at
each barrier or fork. One implication of this approach is that
shared data may be protected by different locks in different
contexts. This may have stylistic problems, but it will still
prevent races.

Deadlock detection. A common cause of deadlock in
complex applications is a circular dependence of threads
waiting for resources. Deadlock can often be detected by the
programmer because the program ceases to make progress.
Nevertheless, finding the cause of deadlock is difficult. A
tool to aid in deadlock detection caused by circular de-
pendences can be implemented using a waits-for graph of
threads waiting for locks; a cycle in the graph indicates
that deadlock has occurred. Deadlock conditions caused by
thread scheduling errors can be detected when no threads are
available on the thread system's ready queue; when this sit-
uation is detected, the condition variables can be scanned to
identify waiting threads. Notice that unlike with races, these
approaches are not guaranteed to detect all potential dead-

328

lock situations. Changing a program's timing characteristics
or forcing frequent context switches can increase the proba-
bility of exposing deadlock situations.

Performance debugging. Performance debugging in
multi-threaded programs is perhaps as difficult as debugging
for correctness. Sharing is the primary source of unexpected
performance degradation in multi-threaded programs.
Statistics such as the average number of threads waiting
for a lock and the number of times a lock is acquired can
be used to identify critical sections of code that should
be optimized. On machines with multiple processors that
implement shared memory, data locality also contributes
significantly to poor performance. Information about the
physical location of the threads that use a lock and the shared
data accessed can also be used to pinpoint performance
bottlenecks.

4.2 Current Status of Tools

Visual Threads [4] is a diagnostic tool for multi-threaded ap-
plications that implements Eraser's race detection algorithm,
as well as deadlock detection and performance statistics. The
tool includes many of the feature discussed above, yet it
is not a viable solution for the classroom. Visual Threads
is only available for systems running Digital UNIX on Al-
pha processors, considered a high-end system for most con-
sumers especially educational institutions.

The difficulty with making such tools widely available is that
they typically require binary instrumentation which is archi-
tecture specific by nature. A slightly less general approach is
to provide a library of data types and synchronization mech-
anisms that have already been instrumented. For example,
the SMARTS library [9], a C++ class library for parallel
programming, implements Eraser's race detection algorithm
for its data objects. Shared data objects inherit from the
base class which provides explicit read and write methods
that modify the lock set if race detection is enabled. The
library also provides synchronization mechanisms that are
aware of the race detector. This approach is very attractive
for the classroom setting because it is portable, inexpensive,
and reusable. Moreover, most project courses such as those
described in the previous sections already have a software
base, and thus the cost of implementing the tools is amor-
tized across subsequent offerings of the course.

5 Conclusion

Multi-threading is a popular programming paradigm used in
a variety of domains. The catalog of common errors pre-
sented in this paper shows that new programmers make syn-
chronization errors even in programs with very simple spec-
ifications. The students often lacked the experience and the
teaching assistants lacked the time to identify subtle synchro-
nization errors in programs that only failed under certain rare
thread schedules. In fact, most programmers of erroneous

code believed i t was correct, for they did not get feedback
suggesting otherwise. It is our hope that the pitfalls pre-
sented in this paper will serve as a guide so that students
may avoid these mistakes. Furthermore, we encourage in-
structors to advocate optimization only when correctness has
been achieved and only when performance studies demon-
strate significant improvement.

Finally, we have found that automated tools, such as the
Eraser dynamic race detector, can be a valuable resources in
debugging multi-threaded programs. Eraser gives feedback
for erroneous programs even if a particular thread schedule
does not reveal it. This helps programmers identify their syn-
chronization bugs. Furthermore, it serves as a starting point
for reasoning about and correcting erroneous code. We be-
lieve that there are opportunities for the development of other
automated tools--such as those discussed in this paperm
to assist in multi-threaded programming, particularly in the
classroom.

Acknowledgments. We thank Stefan Savage for his Eraser
savvy and Brian Bershad for the inspiration.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Alverson, R., Callahan, D., Cummings, D., Koblenz, B.,
Porterfield, A., and Smith, B. The Tera computer system. In
Proceedings of the 1990 ACM SIGARCH International Con-
ference on Supercomputing (ICS '90) (June 1990), pp. 1-.-6.

Bershad, B., and Levy, H . M . CSE 451: Intro-
duction to operating systems. University of Wash-
ington Department of Computer Science and Engineer-
ing. Spring 1996, Autumn 1996, and Winter 1997.
http ://ww~z cs. washington.edu/education/courses/4 51/.

Birrell, A. D. An introduction to programming with threads.
Tech. Rep. 35, Digital Equipment Corporation, Systems Re-
search Center, January 1989.

Compaq Computer Corporation. Visual threads home page.
http://www.unix.digital.comA, isualthreadx/.

Ousterhout, J. K. Why threads are a bad idea (for most pur-
poses). Invited talk at 1996 USENIX Conference, Jan. 1996.
http :Hwww.scriptics.com/people/john.ousterhout/threads.ps.

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and An-
derson, T. Eraser: A dynamic data race detector for multi-
threaded programs. Transactions on Computer Systems 15, 4
(November 1998), 391--411.

Silberschatz, A., and Galvin, E Operating Systems Concepts,
Fourth Edition. Addison-Wesley, 1994.

Srivastava, A., and Eustace, A. ATOM: A system for build-
ing customized program analysis tools. In Proceedings of the
1994 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI '94) (1994), pp. 196---205.

Vajracharya, S., Karmesin, S., Beckman, P., Crotinger, J., Mal-
ony, A., Shende, S., Oldehoeft, R., and Smith, S. SMARTS:
Exploiting temporal locality and parallelism ~rough vertical
execution, in Proceedings of the 1999 ACM SIGARCH In-
ternational Conference on Supercomputing (ICS '99) (June
1999), pp. 302-310.

329

