
Dr. L. Frye
Kutztown University

 How can processes on the same machine
communicate with each other?

 How can processes on different machines
communicate with each other?

 Bidirectional

 Client/Server model

 IP address – port number

 for (; ;) {

wait for client request on listening file des

create private 2-way channel to client

while (no error on channel) {

read from client

process request

respond to client

}

close file desc

}

 How can it be improved?

 What is wrong with
this code?

 for (; ;) {

wait for client request on listening file des

create private 2-way channel to client

fork child to handle client

close channel

clean up zombie children

}

 close listening file desc

handle client

close communication for channel

exit

 What happens if the parent doesn’t close the
file descriptor?

 What is a zombie process?

 What happens if the parent doesn’t clean up
after zombie children?

 What are the advantages of this approach?

 Disadvantages?

 for (; ;) {

wait for client request on listening file des

create private 2-way channel to client

create detached thread to handle client

}

 Why doesn’t the parent close the file
descriptor in this case?

 Why create a detached thread?

 Fixed number of children

 Pool of work threads

 Universal Internet Communication Interface
(UICI) library

 sockaddr

 sockaddr_in
◦ in_addr

 sockaddr_un

 Passed by reference

 Generic address cast specific one

 Gulliver’s Travels

 How values are represented

 Little-endian vs. Big-endian

 int num = 91329;

 Hex value?

 Big-endian: 00 01 64 C1

 Little-endian: C1 64 01 00

 Big-endian

 Network byte order

 Functions
◦ htonl

◦ htons

◦ ntohl

◦ ntohs

 Passive open (server)
◦ socket()

◦ bind()

◦ listen()

 Active open (client)
◦ connect()

 Close
◦ Active

◦ Passive

◦ close()

 socket()

 bind()

 listen()

 accept()

 gethostname()

 gethostbyname()
◦ gethostbyname_r()

◦ getnameinfo()

 char *hostn = “usp.cs.utsa.edu”;

struct hostent *hp;

struct sockaddr_in server;

if ((hp = gethostbyname(hstn)) == NULL)

fprintf(stderr, “Failed to resolve host name\n”);

else

memcpy((char *)&server.sin_addr_s.addr,

hp->h_addr_list[0], hp->h_length);

 addrinfo structure

 gethostbyaddr
◦ gethostbyaddr_r()

◦ getaddrinfo()

 struct hostent *hp;

struct sockaddr_in net;

int sock;

if ((hp = gethostbyaddr(&net.sin_addr,

4, AF_INET))

printf(“Host name is %s\n”, hp->h_name);

 inet_addr

 inet_aton

 inet_ntoa

 socket()

 connect()

 read()

 write()

 recv()

 send()

 Library functions
◦ readn()

◦ writen()

◦ readline()

socket()

connect()

bind()

listen()

accept()

socket()

write()

read()

close()

read()

write()

read() close()

3-way handshake

EOF

data

data

Client
Server

 sockets/TCPsockets/tcpcliserv

 sockets/TCPsockets/tcpcliserv2

 sockets/TCPsockets/sum

 sockets/TCPsockets/tcpserv_signals

TCP
Finite
State
Machine

 Server must handle multiple requests

 Datagram

 How is socket programming over TCP
different from socket programming over UDP?

 What are the advantages of connectionless
sockets?

 Disadvantages?

 Simple request protocol

 Request-reply protocol

 No calls for
◦ listen()

◦ accept()

◦ connect()

 Do need
◦ socket()

◦ bind()

 Read and Write
◦ sendto()

◦ recvfrom()

 sockets/connectionless

