
Dr. L. Frye
Kutztown University

 pid

 Process table

 Parent process (ppid)

 System calls
◦ getpid

◦ getppid

◦ getuid, geteuid

◦ getgid, getegid

◦ setuid, seteuid, setgid, setegid

 Scheduler

 Memory manager

 Magic number

 New process – duplicate existing one

 sched

 init

 pageout

 getty

 login

 Modes
◦ User

◦ Kernel

New Runnable /

Ready

Running
Done

Blocked

Suspended

 Deallocate resources

 Normal
◦ Return

◦ Exit

◦ End of main function (implicit return)

 Abnormal
◦ Abort function

◦ Signal

 What is a zombie process?

 What is an orphan process?

 Code area

 Data area

 Stack area

 User area

 Page tables

 PID

 PPID

 Real and effective UID and GID

 Process state

 Location of code, data, stack and user area

 Pending signals

 Scheduling Algorithms
◦ First Come First Serve (FCFS)

◦ Shortest Job First

◦ Priority Scheduling

◦ Round Robin Scheduling

◦ Multilevel Queue Scheduling

 Multilevel priority queue

 Nice value

 Context Switch

 Process context
◦ Executable code

◦ Stack

◦ Memory for variables

◦ Registers

◦ Program counter

◦ Process information

 What might cause a context switch?

 Pages

 Page table
◦ Modified bit

◦ Referenced bit

◦ Age

 Page daemon

 RAM table

 Swap space

 Page fault

Duplicate existing process
◦ fork system call

Returns two times
 Parent – child’s PID

 Child – 0

 Circle process

 Edge is-a-parent relationship

 processes/simplechain.c
1

2

3

4

 processes/simplefan.c

4

321

 uid, gid, euid, guid

 suid and sgid bits

 Environment variables

 Open file descriptors and file offsets

 umask value

 SID and PGRP ID

 Controlling terminal

 Nice value

 Current working directory

 Resource limits

 PID

 PPID

 Own copy of parent’s file descriptors

 No file locks from parent

 Pending signal set initialized to empty set

 Own copy of parent’s data area

 Own copy of parent’s stack area

 Share code area
◦ Copy-on-write (COW)

 processes/fork1.c

 processes/fork2.c

 System calls
◦ exit

◦ _exit

 Why have two different exit function calls?

 System calls
◦ wait

◦ waitpid

 processes/waitpid_ex.c

 Create a program that would result in an
orphan process.

 processes/forkOrphan.c

 Create a program that would result in a
zombie process.
 processes/forkZombie.c

 execl

 execv

 execle

 execlp

 execvp

 execve

 processes/forkexec.c

 Shorfalls
◦ Inefficient

◦ Security

 Calls
◦ fork

◦ exec

◦ waitpid

◦ So, why use the system call?

