
Dr. L. Frye
Kutztown University

Image from Wikipedia

 Can you write a program for each
philosopher that does what it is supposed
to do and never gets stuck?

#define N 5 /* number of philosophers */

void philosophers(int i) /* i: philosopher #, from 0 to 4 */

{

while (TRUE) {

think (); /* philosopher is thinking */

take_fork(i); /* take left fork */

take_fork((i+1) % N); /* take right fork */

eat(); /* eat spaghetti */

put_fork(i); /* put left fork back on the table */

put_fork((i+1) % N); /* put right fork back on table */

}

} /* end philosophers */

 Do you see any problems with this solution?

 How could this be prevented?

 Do you see any problems with this new
solution?

 Any solutions to prevent this?

 Another solution – binary semaphores?

 What is the problem with this solution?

 classics/diningPhil.c

 If time – implement as class

 If no time – look at code in example
(diningPhil.c)

 Models DB access

 Airline reservation system

 Two strategies
◦ Strong reader synchronization

◦ Strong writer synchronization

typedef int semaphore;

semaphore mutex = 1; /* controls access to ‘rc’ */

semaphore db = 1; /* controls access to DB */

int rc = 0; /* # of processes reading or
wanting to */

void reader() {

while (TRUE) {

down(&mutex); /* exclusive access rc */

rc = rc + 1; /* one more reader */

/* if first reader, get access to DB */

if (rc == 1) down(&db);

up(&mutex); /* release excl access rc */

read_data_base();

down(&mutex); /* get excl access to rc */

rc = rc – 1; /* one less reader */

/* if last reader, release access to DB */

if (rc == 0) up(&db);

up(&mutex); /* release excl access */

use_data_read();

}

} /* end reader */

void writer() {

while (TRUE) {

think_up_data(); /* noncritical section */

down(&db); /* get exclusive access */

write_data_base();

up(&db); /* release excl access */

}

} /* end writer */

 Why is it necessary to have exclusive access
to rc?

 Subtle decision in this solution.

 What would happen when a writer arrives?

 Any thoughts on how to prevent this
situation?

 Read-write locks
◦ Type: pthread_rwlock_t

◦ pthread_rwlock_init()

◦ pthread_rwlock_destroy()

◦ Acquiring locks

 pthread_rwlock_rdlock()

 pthread_rwlock_tryrdlock()

 pthread_rwlock_wrlock()

 pthread_rwlock_trywrlock()

◦ pthread_rwlock_unlock()

 One barber

 One barber chair

 n chairs for waiting customers

 Program the barber and the customers
without getting into any race
conditions.

 Design solution BEFORE look at code!

#define CHAIRS 5 /* # chairs waiting customers */

typedef int semaphore;

semaphore customers = 0; /* # customers waiting */

semaphore barbers = 0; /* # barbers waiting */

semaphore mutex = 1; /* for mutual exclusion */

int waiting = 0; /* customers are waiting */

void barber()

{

while (TRUE) {

down(customers); /* go to sleep if # custs = 0 */

down(mutex); /* acquire access to waiting */

waiting = waiting – 1; /* decrement count of \
waiting customers */

up(barbers); /* one barber ready to cut hair */

up(mutex); /* release waiting */

cut_hair(); /* noncritical section */

}

} /* end barber */

void customer()

{

down(mutex); /* enter critical section */

if (waiting < CHAIRS) { /* if no free chairs, leave */

waiting = waiting + 1; /* increment count of

waiting customers */

up(customers); /* wake up barber if necessary */

up(mutex); /* release access to waiting */

down(barbers); /* go to sleep if

free barbers=0 */

get_haircut();

}

else {

up(mutex); /* shop is full, don’t wait */

}

} /* end customer */

