
Dr. L. Frye
Kutztown University

 Exists within process and uses process
resources

 Independent flow of control

 Share resources with other threads

 Dies with parent process

 Memory map (virtual addresses)

 File descriptor table

 Signal descriptor table

 User IDs

 Current working directory

 Registers
◦ Stack Pointer

◦ Program Counter

 Scheduling properties

 Set of pending and block signals

 Thread specific data

Image from “Multithreaded

Programming with Pthreads by

Lewis & Berg

 Process
◦ Registers

◦ Virtual memory

◦ Some other process state

 Threads
◦ Registers

Image from “Multithreaded Programming with Pthreads by Lewis & Berg

Image from “Multithreaded Programming with Pthreads by Lewis & Berg

Platform fork() pthread_create()

real user sys real user sys

IBM332 MHz 604e

4 CPUs/node

512 MB Memory

AIX 4.3

92.4 2.7 105.3 8.7 4.9 3.9

IBM 375 MHz

POWER3

16 CPUs/node

16 GB Memory

AIX 5.1

173.6 13.9 172.1 9.6 3.8 6.7

INTEL 2.2 GHz Xeon

CPU/node

2 GB Memory

RedHat Linux 7.3

17.4 3.9 13.5 5.9 0.8 5.3

 Block for long waits

 Use many CPU cycles

 Must respond to asynchronous events

 Lesser or greater importance

 Performed in parallel

 Manager/worker

 Pipeline

 Peer

 pthreads

 Return
◦ 0

◦ Error number

 Thread ID
◦ pthread_t

 Basic Functions
◦ pthread_self()

◦ pthread_equal()

 pthread_create()

 Main – single, default thread

 After a thread has been created, how do you
know when it will be scheduled to run by the
OS?

 pthread_t threads[NUM_THREADS];

int rc, t;

for (t = 0; t < NUM_THREADS; t++) {

printf(“Creating thread %d\n”, t);

rc = pthread_create(&threads[t], NULL,
PrintHello, (void *) &t);

……

}

 What is wrong with this code fragment?

 How can it be corrected?

 threads/hello.c

 threads/hello_struct.c

 Return value
◦ Return function

◦ Free space

 Parameter
◦ Do not reuse

◦ Separate variable

 threads/copymultiple.c

 Page 429, Ex 12.13

 Thread returns from starting routine

 Calls pthread_exit()

 Cancelled by another thread calling
pthread_cancel()

 pthread_detach()

 Detachable vs. Nondetachable

 Suspend execution of calling thread
until joined thread terminates
◦ pthread_join()

 Single thread exit
◦ pthread_exit()

 pthread_cancel()

 pthread_setcanceltype()

 pthread_testcancel()

 Mutual exclusion

 Two states
◦ Locked

◦ Unlocked

 Synchronization
◦ Critical sections

◦ Shared resources

 Create and initialize

 Several threads attempt to lock the mutex

 Only one succeeds

 The owner thread performs some set of
actions

 The owner unlocks the mutex

 Another thread acquires the mutex and
repeats the process

 Finally the mutex is destroyed

 Type: pthread_mutex_t

 pthread_mutex_init()

 pthread_mutex_destroy()

 pthread_mutex_lock()

 pthread_mutex_trylock()

 pthread_mutex_unlock()

 An uncooperative thread can enter a
critical section without acquiring a
mutex lock.

 What are some ways to prevent this
from happening?

 threads/counter.c

 What are possible side affects or what can go
wrong if the count variable is not protected
by a mutes lock?

 What really happens when a variable is
incremented?

 int randsafe(double *ranp) {

static pthread_mutex_t lock =

PTHREAD_MUTEX_INITIALIZER;

int error;

if (error = pthread_mutex_lock(&lock))

return error;

*ranp = (rand() + 0.5)/(RAND_MAX + 1.0);

return pthread_mutex_unlock(&lock);

}

 Busy wait

 Mutex
◦ Lock mutex

◦ Test condition

◦ If true, unlock mutex and exit loop

◦ If false, suspend thread and unlock mutex

 Associated with specific condition

 Atomic waiting operation

 Type: pthread_cond_t

 Initialize
◦ PTHREAD_CONDITION_INITIALIZER

◦ pthread_cond_init()

 Destroy
◦ pthread_cond_destroy()

 pthread_cond_wait()

 pthread_mutex_lock(&m);

while (x != y)

pthread_cond_wait(&v, &m);

/* modify x or y if necessary */

pthread_mutex_unlock(&m);

 pthread_cond_signal()

 pthread_cond_broadcast()

 pthread_mutex_lock(&m)

x++;

pthread_cond_signal(&v);

pthread_mutex_unlock(&m);

 pthread_cond_timedwait()

 Acquire the mutex before testing the
predicate

 Retest the predicate after returning from a
pthread_cond_wait – Why?

 Acquire the mutex before changing any of the
variables appearing in the predicate.

 Hold the mutex only for a short period of

 Release the mutex
◦ explicitly - pthread_mutex_unlock()

◦ implicitly - pthread_cond_wait()

 threads/condvar1.c

 threads/tbarrier.c

 threads/syncConditionVar.c

 All threads in process share process’s
signal handlers.

 Each thread has its own signal mask.

 What does this mean?

 Signal Types
◦ Asynchronous

◦ Synchronous

◦ Directed

 pthread_sigmask()

