CSC552 - Advanced UNIX
Programming

Threads

Dr. L. Frye
Kutztown University

Printer Server

Inputreques

Print Server ™A/~

/

WV — —U‘ queus

i

-PW

*"'\W

—— = Control mu

W’ Thread

ST DE SyIrIgoigzed

Printerl

Printer2

Printet3

UNIX Threads

» Exists within process and uses process
resources

» Independent flow of control
» Share resources with other threads
» Dies with parent process

Process Structure

» Memory map (virtual addresses)
» File descriptor table

» Signhal descriptor table

» User IDs

» Current working directory

Thread Maintains Own

» Registers
- Stack Pointer
> Program Counter

» Scheduling properties
» Set of pending and block signals
» Thread specific data

Process ID

Process UID GID EUID EGID CWD...
Structure —
——————i |
Signal Dispatch Table
} Memory Map
|
File Descriptors
L 2
LWP 2 LWP 1
LWPID LWPID
Priority " Priority
Signal Mask Signal Mask
ngisters Rogisters

Kernel Stack Kernel Stack

“Multithreaded

Context-Switch

» Process
> Registers
> Virtual memory
- Some other process state

» Threads
- Registers

Concurrency

T1 & ——
T2 CPU
T3 N

Three Threads Running Concurrently on One CPU

Image from “Multithreaded Programming with Pthreads by Lewis & Berg

Parallelism

T — — CPU
N CPU
T3 - CPU

Three Threads Running in Parallel on Three CPUs

Image from “Multithreaded Programming with Pthreads by Lewis & Berg

Performance

Platform fork() pthread_create()

real user Sys real user Sys

IBM332 MHz 604e 02.4 2.1 105.3 8.7 4.9 3.9
4 CPUs/node
512 MB Memory
AlX 4.3

IBM 375 MHz 173.6 |13.9 172.1 0.6 3.8 6.7
POWERS3

16 CPUs/node
16 GB Memory
AlIX 5.1

INTEL 2.2 GHz Xeon |17.4 3.9 13.5 5.9 0.8 5.3
CPU/node

2 GB Memory
RedHat Linux 7.3

Suitable Tasks

» Block for long waits

» Use many CPU cycles

» Must respond to asynchronous events
» Lesser or greater importance

» Performed in parallel

Common Models

» Manager/worker

» Pipeline

» Peer

POSIX Threads

» pthreads
» Return

> 0

> Error number
» Thread ID

- pthread_t

» Basic Functions
- pthread_self()
> pthread_equal()

Thread Creation

» pthread_create()
» Main - single, default thread

» After a thread has been created, how do you
know when it will be scheduled to run by the

0S?

Create Example

» pthread_t threads[NUM_THREADS];
Int rc, t;
for (t = 0; t < NUM_THREADS; t++) {
printf(“Creating thread %d\n”, t);
rc = pthread_create(&threads[t], NULL,
PrintHello, (void *) &t);

» What is wrong with this code fragment?

» How can it be corrected?

More Examples

» threads/hello.c

» threads/hello_struct.c

.

Freeing space

» Return value
- Return function
> Free space

» Parameter

> Do not reuse
- Separate variable

» threads/copymultiple.c
» Page 429, Ex 12.13

A
A\ AN
\ - AN
\\ A\ \)
A\ AN
O \)
AX
o\ AN

Thread Termination

» Thread returns from starting routine
» Calls pthread_exit()

» Cancelled by another thread calling
pthread_cancel()

» pthread_detach()

Joinable Threads

» Detachable vs. Nondetachable

» Suspend execution of calling thread
until joined thread terminates
- pthread_join()

» Single thread exit
- pthread_exit()

Cancel a Thread

» pthread_cancel()
» pthread_setcanceltype()

» pthread_testcancel()

User-level Threads

Process

S B
runtime
mapping

% user—=level thread

@® Kkernel entity

Kernel-level Threads

f kernel-level thread

Hybrid Threads

Process

T

: runt‘h‘ne
. mapping’

% user—level thread

® Kkernel entity

Mutex

» Mutual exclusion

» Two states
> Locked
- Unlocked

» Synchronization
> Critical sections
- Shared resources

Typical Sequence

» Create and initialize
» Several threads attempt to lock the mutex
» Only one succeeds

» The owner thread performs some set of
actions

» The owner unlocks the mutex

» Another thread acquires the mutex and
repeats the process

» Finally the mutex is destroyed

Mutex Functions

» Type: pthread_mutex_t

4
<
<
<
<

othread_mutex_init()
othread_mutex_destroy()
nthread_mutex_lock()
othread_mutex_trylock()
hthread_mutex_unlock()

Cooperation

» An uncooperative thread can enter a
critical section without acquiring a
mutex lock.

» What are some ways to prevent this
from happening?

Example

» threads/counter.c

» What are possible side affects or what can go
wrong if the count variable is not protected
by a mutes lock?

» What really happens when a variable is
incremented?

Protect Library Functions

» int randsafe(double *ranp) {
static pthread_mutex_t lock =

PTHREAD_MUTEX_INITIALIZER;
Int error;

if (error = pthread_mutex_lock(&lock))
return error;

*ranp = (rand() + 0.5)/(RAND_MAX + 1.0);
return pthread_mutex_unlock(&lock);

Wait for Condition

» Busy wait

» Mutex
> Lock mutex
- Test condition
- If true, unlock mutex and exit loop
- If false, suspend thread and unlock mutex

Condition Variables

» Associated with specific condition
» Atomic waiting operation

» Type: pthread_cond_t

» Initialize
> PTHREAD_CONDITION_INITIALIZER
> pthread_cond_init()

» Destroy
> pthread_cond_destroy()

Condition Wait

» pthread_cond_wait()

» pthread_mutex_lock(&m);
while (x I=y)
pthread_cond_wait(&v, &m);
/* modify x or y if necessary */
pthread_mutex_unlock(&m);

Condition Signal

» pthread_cond_signal()
» pthread_cond_broadcast()

» pthread_mutex_lock(&m)
X++;
pthread_cond_signal(&v);
pthread_mutex_unlock(&m);

» pthread_cond_timedwait()

Guidelines

» Acquire the mutex before testing the
oredicate

» Retest the predicate after returning from a
othread_cond_wait - Why?

» Acquire the mutex before changing any of the
variables appearing in the predicate.

» Hold the mutex only for a short period of

» Release the mutex
- explicitly - pthread_mutex_unlock()
- implicitly - pthread_cond_wait()

Examples

» threads/condvarl.c
» threads/tbarrier.c

» threads/syncConditionVar.c

Signal Handling and Threads

» All threads in process share process’s
signal handlers.

» Each thread has its own signal mask.

» What does this mean?

Signals and Threads

» Signal Types
- Asynchronous
> Synchronous
> Directed

» pthread_sigmask()

