
Dr. L. Frye
Kutztown University





 Exists within process and uses process 
resources

 Independent flow of control

 Share resources with other threads

 Dies with parent process



 Memory map (virtual addresses)

 File descriptor table

 Signal descriptor table

 User IDs 

 Current working directory



 Registers
◦ Stack Pointer

◦ Program Counter

 Scheduling properties

 Set of pending and block signals

 Thread specific data



Image from “Multithreaded 

Programming with Pthreads by 

Lewis & Berg



 Process
◦ Registers

◦ Virtual memory

◦ Some other process state

 Threads
◦ Registers



Image from “Multithreaded Programming with Pthreads by Lewis & Berg



Image from “Multithreaded Programming with Pthreads by Lewis & Berg



Platform fork() pthread_create()

real user sys real user sys

IBM332 MHz 604e

4 CPUs/node

512 MB Memory

AIX 4.3

92.4 2.7 105.3 8.7 4.9 3.9

IBM 375 MHz 

POWER3

16 CPUs/node

16 GB Memory

AIX 5.1

173.6 13.9 172.1 9.6 3.8 6.7

INTEL 2.2 GHz Xeon

CPU/node

2 GB Memory

RedHat Linux 7.3

17.4 3.9 13.5 5.9 0.8 5.3



 Block for long waits

 Use many CPU cycles

 Must respond to asynchronous events

 Lesser or greater importance

 Performed in parallel



 Manager/worker 

 Pipeline

 Peer



 pthreads

 Return
◦ 0

◦ Error number 

 Thread ID
◦ pthread_t

 Basic Functions
◦ pthread_self()

◦ pthread_equal()



 pthread_create()

 Main – single, default thread

 After a thread has been created, how do you 
know when it will be scheduled to run by the 
OS?



 pthread_t threads[NUM_THREADS];

int rc, t;

for (t = 0; t < NUM_THREADS; t++)  {

printf(“Creating thread %d\n”, t);

rc = pthread_create(&threads[t], NULL, 
PrintHello, (void *) &t);

……

}

 What is wrong with this code fragment?

 How can it be corrected?



 threads/hello.c

 threads/hello_struct.c



 Return value
◦ Return function

◦ Free space

 Parameter
◦ Do not reuse

◦ Separate variable

 threads/copymultiple.c

 Page 429, Ex 12.13



 Thread returns from starting routine

 Calls pthread_exit()

 Cancelled by another thread calling 
pthread_cancel()

 pthread_detach()



 Detachable vs. Nondetachable

 Suspend execution of calling thread 
until joined thread terminates
◦ pthread_join()

 Single thread exit
◦ pthread_exit()



 pthread_cancel()

 pthread_setcanceltype()

 pthread_testcancel()









 Mutual exclusion

 Two states
◦ Locked

◦ Unlocked

 Synchronization
◦ Critical sections

◦ Shared resources



 Create and initialize

 Several threads attempt to lock the mutex

 Only one succeeds

 The owner thread performs some set of 
actions

 The owner unlocks the mutex

 Another thread acquires the mutex and 
repeats the process

 Finally the mutex is destroyed



 Type: pthread_mutex_t

 pthread_mutex_init()

 pthread_mutex_destroy()

 pthread_mutex_lock()

 pthread_mutex_trylock()

 pthread_mutex_unlock()



 An uncooperative thread can enter a 
critical section without acquiring a 
mutex lock.

 What are some ways to prevent this 
from happening?



 threads/counter.c

 What are possible side affects or what can go 
wrong if the count variable is not protected 
by a mutes lock?

 What really happens when a variable is 
incremented?



 int randsafe(double *ranp) {

static pthread_mutex_t lock = 

PTHREAD_MUTEX_INITIALIZER;

int error;   

if (error = pthread_mutex_lock(&lock))

return error; 

*ranp = (rand() + 0.5)/(RAND_MAX + 1.0);

return pthread_mutex_unlock(&lock);

}



 Busy wait

 Mutex
◦ Lock mutex

◦ Test condition

◦ If true, unlock mutex and exit loop

◦ If false, suspend thread and unlock mutex



 Associated with specific condition

 Atomic waiting operation

 Type: pthread_cond_t

 Initialize
◦ PTHREAD_CONDITION_INITIALIZER

◦ pthread_cond_init()

 Destroy
◦ pthread_cond_destroy()



 pthread_cond_wait()

 pthread_mutex_lock(&m);

while (x != y)

pthread_cond_wait(&v, &m);

/* modify x or y if necessary */

pthread_mutex_unlock(&m);



 pthread_cond_signal()

 pthread_cond_broadcast()

 pthread_mutex_lock(&m)

x++;

pthread_cond_signal(&v);

pthread_mutex_unlock(&m);

 pthread_cond_timedwait()



 Acquire the mutex before testing the 
predicate

 Retest the predicate after returning from a 
pthread_cond_wait – Why?

 Acquire the mutex before changing any of the 
variables appearing in the predicate.

 Hold the mutex only for a short period of

 Release the mutex
◦ explicitly - pthread_mutex_unlock()

◦ implicitly - pthread_cond_wait()



 threads/condvar1.c

 threads/tbarrier.c

 threads/syncConditionVar.c



 All threads in process share process’s 
signal handlers.

 Each thread has its own signal mask.

 What does this mean?



 Signal Types
◦ Asynchronous

◦ Synchronous

◦ Directed

 pthread_sigmask()


