Network Security

CSC 512 - Networks: Architectures and Protocols

Instructor: Dr. Frye

frye@kutztown.edu

Computer Science & Information Technology Department, Kutztown University

Network Security

Definition?

"Network security is the process of taking physical and software preventative measures to protect the underlying networking infrastructure from unauthorized access, misuse, malfunction, modification, destruction, or improper disclosure, thereby creating a secure platform for computers, users, and programs to perform their permitted critical functions within a secure environment."

Network Attacks

What are some examples of attacks against networks?

Security Overview

- Integrity
- Confidentiality
- Availability
- Authorization
- Authentication
- Nonrepudiation
- Replay Avoidance

Phases of Network Security

Protection

Detection

Reaction

Network Security Components

What are some examples of network security components / devices / services?

Network Security Components

- Antivirus Software
- Access Control
- MultifactorAuthentication
- Encryption
- VPN
- Firewalls
- Wireless Security

- Email Security
- Web Security
- IDS / IPS
- Honeypots
- NetworkSegmentation
- Policies

Network Security Tools

What are some tools that can be beneficial for managing network security?

Firewalls

Purpose

- □ Restrict people to enter at a carefully controlled point
- Prevent attackers from getting close to your other defenses
- □ Restrict people to leave at a carefully controlled point

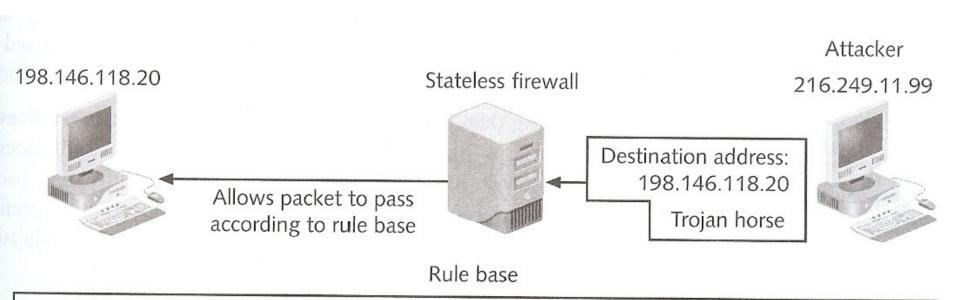
Design goals

- □ All traffic from inside to outside and vice versa must travel through the firewall
- Only authorized traffic can pas through the firewall
- □ The firewall must be immune to penetration

Access Control

- Service control
- Direction control
- User control
- Behavior control

Firewall Management Cycle


- Draft a written security policy
- Design the firewall to implement the security policy
- Implement the firewall design by installing selected hardware or software
- Test the firewall
- Review new threats, requirements for additional security, and updates to adopted systems and software.

Stateless Packet Filter

- Rule Base
- Forward or Discard

- Advantages?
- Disadvantages?

80

Destination IP

198.146.118.20

TCP

Rule Transport Protocol Source IP Source Port

Any

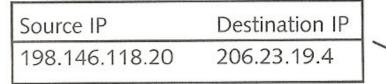
HTTP In

Any

Destination Port Action Time

Allow

80

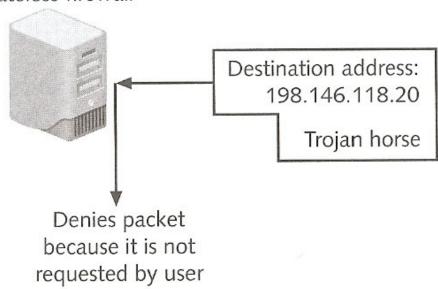


Example Rules

Table 9-1 Stateless packet-filtering rules

Rule	Source IP	Source Port	Destination IP	Destination Port	Action
1	Any	Any	192.168.120.0	Above 1023	Allow
2	192.168.120.1	Any	Any	Any	Deny
3	Any	Any	192.168.120.1	Any	Deny
4	192.168.120.0	Any	Any	Any	Any
5	Any	Any	192.168.120.2	25	Allow
6	Any	Any	192.168.120.3	80	Allow
7	Any	Any	Any	Any	Deny

Current states



No current relationship between 198.146.118.20 and 216.249.118.20

198.146.118.20

Stateless firewall

Attacker 216.249.11.99

Rule base

Rule	Transport	Protocol	Source IP	Source Port	Destination IP	Destination Port	Action	Time
1	TCP	HTTP In	Any	80	198.146.118.20	80	Allow	Any

Stateful Packet Filter Connection Table

Table 9-2 State table example

Source IP	Source Port	Destination IP	Destination Port	Connection State
192.168.120.101	1037	209.233.19.22	80	Established
192.168.120.104	1022	165.66.28.22	80	Established
192.168.120.107	1010	65.66.122.101	25	Established
192.168.120.102	1035	213.136.87.88	79	Established
223.56.78.11	1899	192.168.120.101	80	Established
206.121.55.8	3558	192.168.120.101	80	Established
224.209.122.1	1079	192.168.120.105	80	Established

Firewall Rules

- Allow all, deny specific
- Deny all, allow specific

- Processed in order
- Keep simple and short

Establish Effective Rules

- Based on Security Policy
 - □ Firewall Policy
- Simple and short
- Restrict access to internal network
- Control Internet services

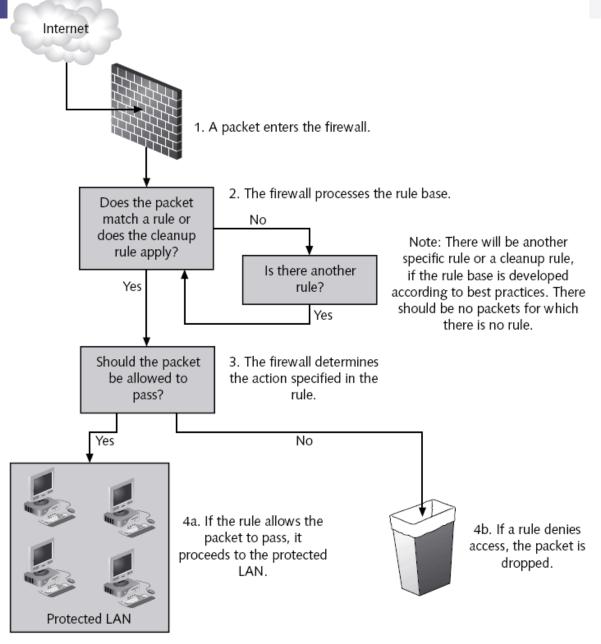


Figure 9-11 Firewalls process rules in order until a match is found CSC512 - Dr. Lisa Frye, Kutztown University

Example Rules

Table 9-11 A typical packet-filtering rule base

Rule	Source IP	Source Port	Destination IP	Destination	Action	What It Does
1	192.168.120.1	Any	Any	Any	Deny	Prevents the firewall itself from making any connections
2	Any	Any	192.168.120.1	Any	Deny	Prevents anyone from connecting to the firewall
3	192.168.120.0	Any	Any	Any	Allow	Allows internal users to access external computers
4	192.168.120.0	Any	192.168120.4	53	Allow	Enables internal users to connect to the DNS server

Table 9-11 A typical packet-filtering rule base (continued)

Rule	Source IP	Source Port	Destination IP	Destination	Action	What It Does
5	Any	Any	192.168.120.2	25	Allow	Allows external and internal users to access the e-mail server via SMTP port 25
6	192.168.120.0	Any	192.168.120.2	110	Allow	Enables internal users to connect to the e-mail server using POP3 port 110
7	Any	Any	192.168.120.3	80	Allow	Enables both external and internal users to connect to the Web server
8	Any	Any	Any	Any	Deny	Blocks all traffic not covered by previous rules

IPSec Services

- Access control
- Connectionless security
- Origin authentication
- Replay protection
- Privacy / Confidentiality

Benefits

- Provides strong security applied to all IP traffic
- IPSec in a firewall can be resistant to bypass
- Transparent to applications
- Can be transparent to end users
- Can provide security for individual users if needed

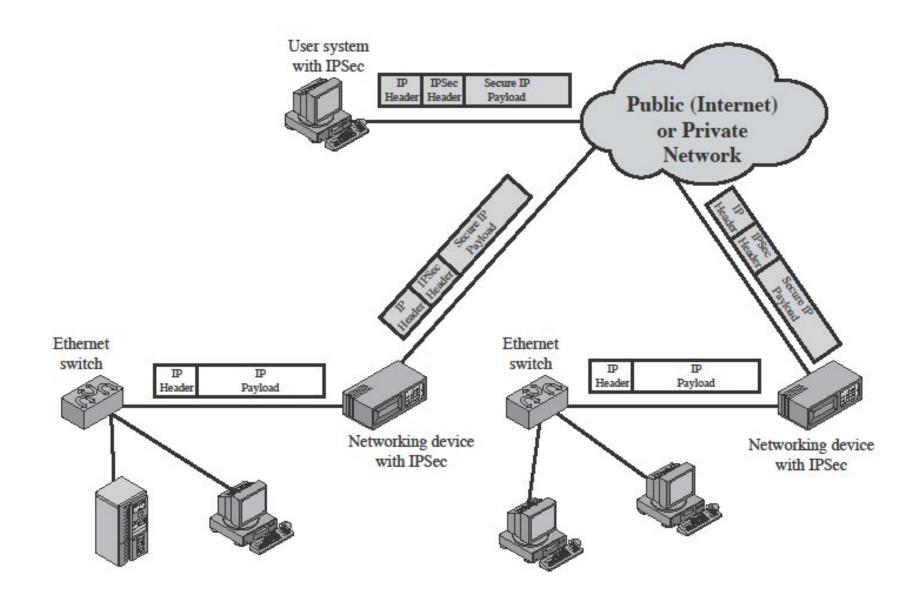


Figure 8.1 An IP Security Scenario

Protocols

- Authentication Header (AH)
 - □ Access control
 - Integrity
 - Authentication
- Encapsulating Security Payload (ESP)
 - Access Control
 - Confidentiality
 - □ Integrity (optional)
 - □ Authentication (optional)

Next header	Payload length	Reserved						
Se	Security Parameters Index (SPI)							
	Sequence Number							
Authentication Data (variable)								

м

Encapsulating Security Payload

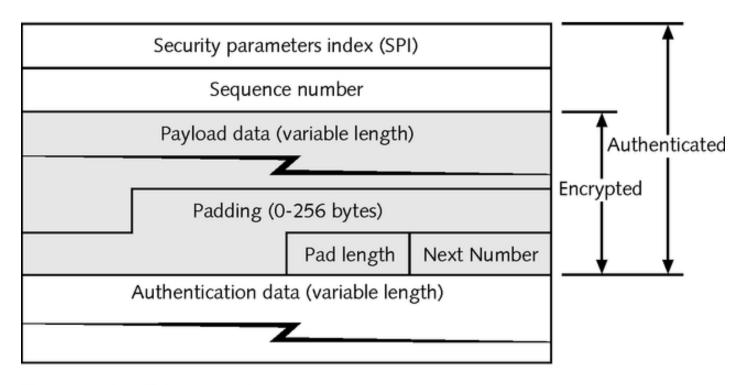


Figure 4-8 IPSec security payload

Security Associations

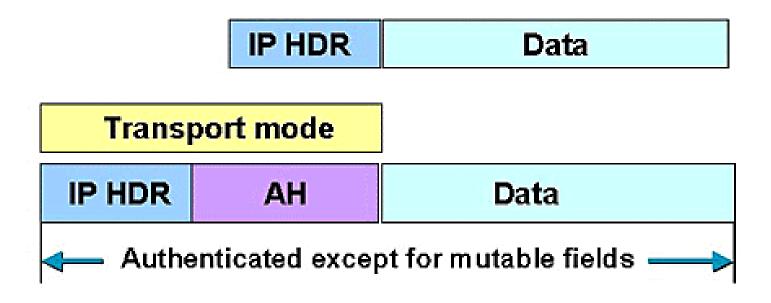
- Contract between two communicating entities
- One-way relationship
- Protocol specific
- What and how of IPSec protection

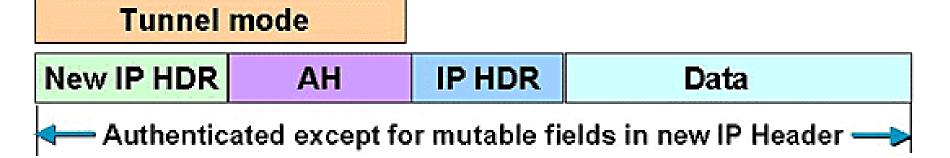
SA Information

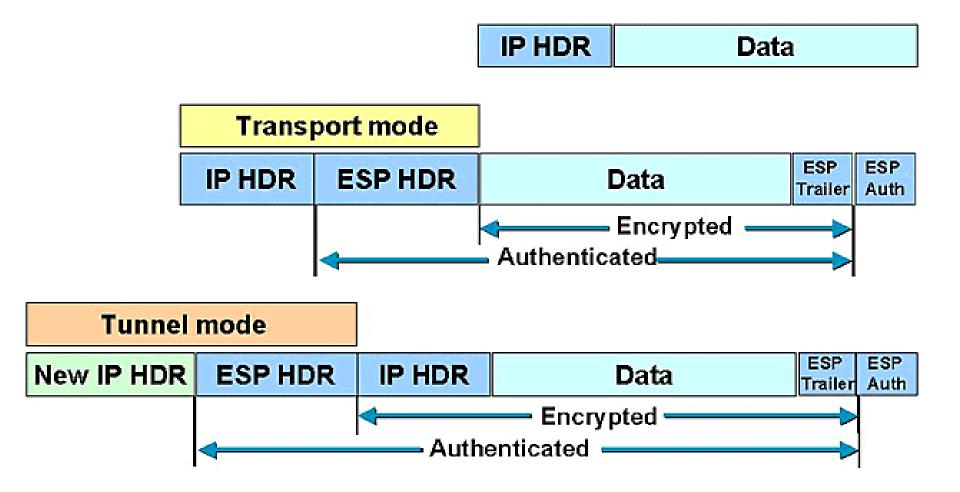
- Security Parameters Index (SPI)
- IP Destination Address
- Security Protocol Identifier
- Secret keys
- Encapsulation mode

SA types

- Transport Mode
 - □ Between hosts
 - □ One IP header
- Tunnel Mode
 - □ Between hosts or gateways
 - □ Two IP headers
 - □ Protects entire IP packet


IPSec Example


- Packet routed from host A to a firewall or secure router at boundary of A's network.
- Firewall or router determines if IPSec is necessary for that packet
- If requires IPSec, firewall/router performs IPSec processing
 - Encapulates the packet in an outer IP header
 - □ Source IP address of outer IP packet is this firewall/router
 - Destination IP address of outer IP packet may be firewall/router that forms boundary to B's local network
- Packet is now routed to B's firewall/router
- Intermediate routers examine only the outer IP header
- B's firewall/router strips off the outer IP header
- Inner packet is delivered to host B


	Transport Mode SA	Tunnel Mode SA	
AH	Authenticates IP payload and selected portions of IP header and IPv6 extension headers.	Authenticates entire inner IP packet (inner header plus IP payload) plus selected portions of outer IP header and outer IPv6 extension headers.	
ESP	Encrypts IP payload and any IPv6 extension headers following the ESP header.	Encrypts entire inner IP packet.	
ESP with Authentication	Encrypts IP payload and any IPv6 extension headers following the ESP header. Authenticates IP payload but not IP header.	Encrypts entire inner IP packet. Authenticates inner IP packet.	

IPSec AH Packet Examples

IPSec ESP Packet Examples

IPSec Databases

- Security Associations Database (SAD)
- Security Policy Database (SPD)
 - □ Discard
 - Bypass
 - □ Protect

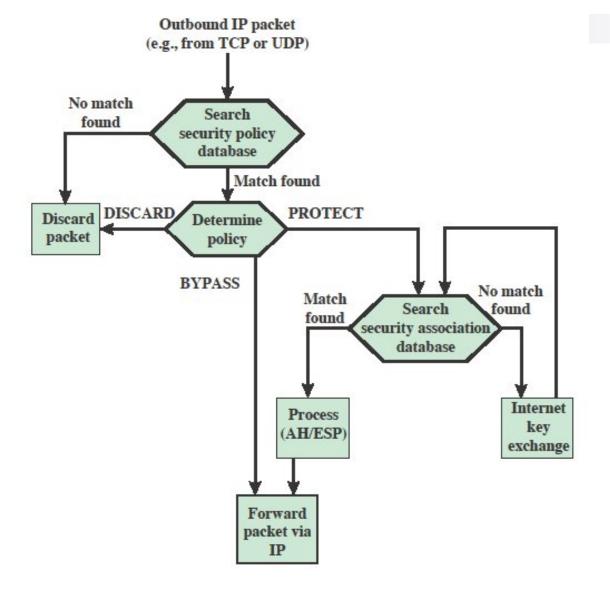
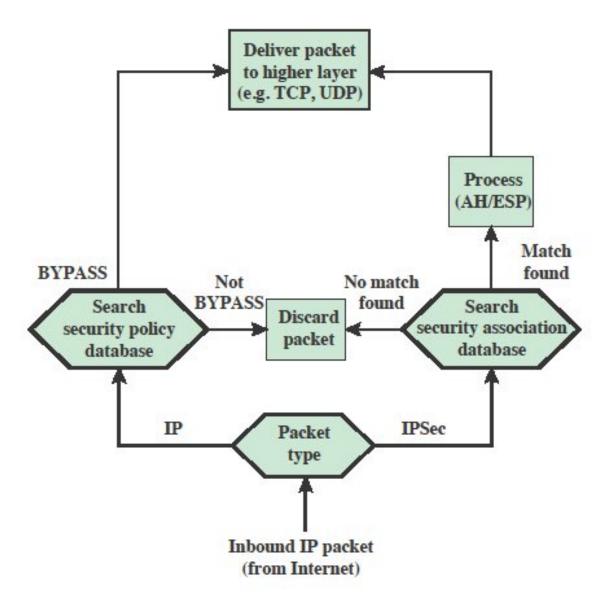
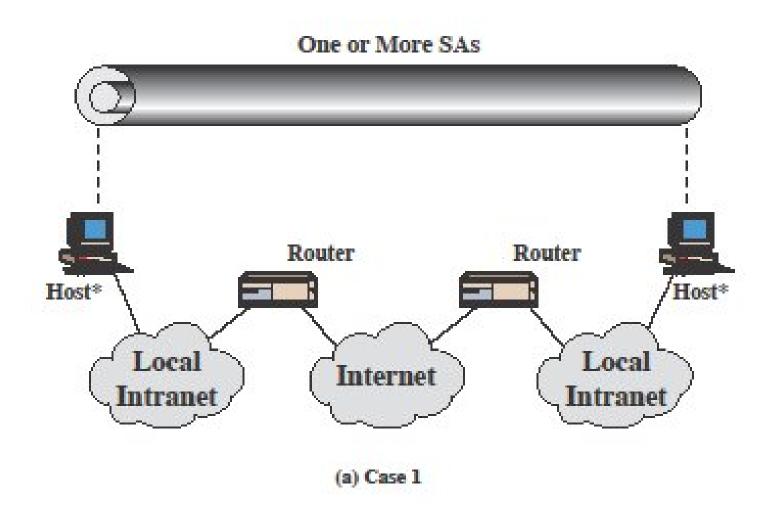


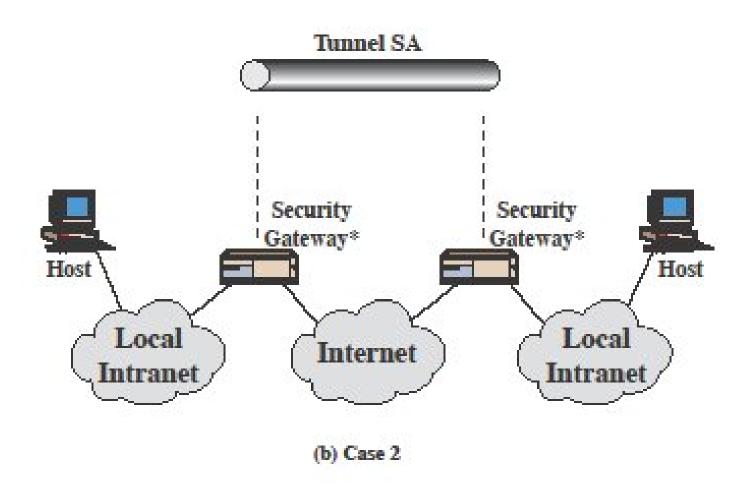
Figure 8.2 IPsec Architecture

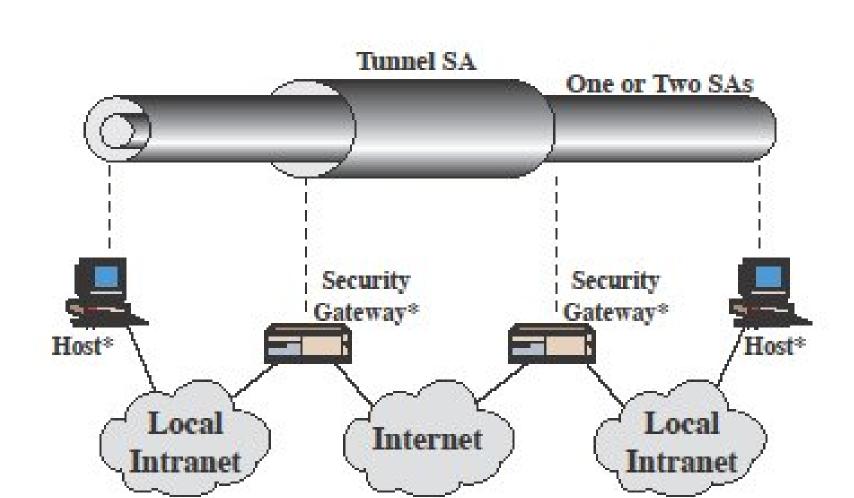


Selectors

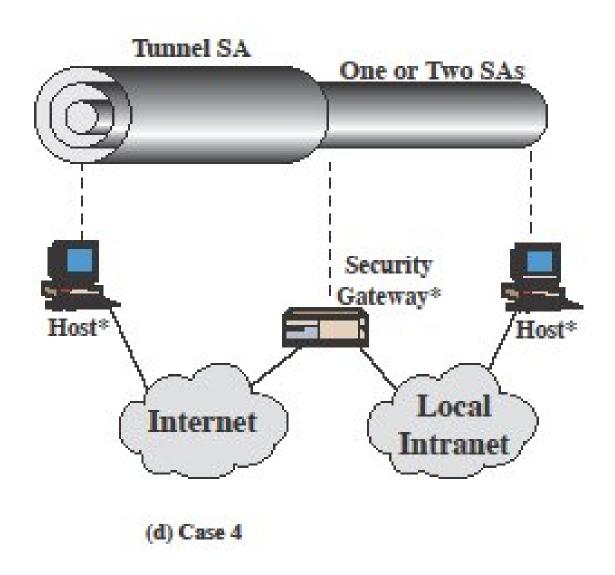
- Identifies SPD entry
- IP and upper-layer protocol field values
 - □ Source IP address
 - Destination IP address
 - □ DNS name
 - □ IP protocol ID field
 - □ Source port number
 - □ Destination port number






SA Bundles

- Combine multiple SAs
- Transport Adjacency
- Iterated Tunneling
- Combination of two



(c) Case 3

Authentication plus Confidentiality

ESP with Authentication

Transport Adjacency

Transport-tunnel Bundle

ESP with Authentication

- Apply ESP to data
- Append Authentication Data field
- Transport mode ESP
 - Apply encryption and authentication to IP payload
- Tunnel mode ESP
 - □ Authentication applied to entire IP packet

Transport Adjacency

- Two bundled transport SAs
- Inner SA ESP SA
- Outer SA AH SA
- ESP without Authentication option
- Encryption applied to IP payload
- IP header then ESP header
- AH applied to ESP and original IP packet

Transport-Tunnel Bundle

- Authentication before encryption
- Inner packet AH SA
- Outer packet ESP SA
- Authenticate entire IP packet
- Apply ESP in tunnel mode
- Add new outer IP header

Key Management

Manual

Automatic