Ad Hoc Networks

CSC 512 - Networks: Architectures and Protocols

Instructor: Dr. Frye

frye@kutztown.edu

Computer Science & Information Technology Department, Kutztown University

Mesh Networks

- Network constructed of many individual links
- Mesh networking route data in a mesh network
- True mesh network / fully connected network
- Wireless mesh network
- Meshing

Layering in Mesh Networks

Mesh-under

(IP) route-over

Ad hoc Networks

- Infrastructure-less
- Routing more complex
- Node
 - □Host
 - □ Router

MAC Protocol Issues

- Bandwidth efficiency
- Quality of Service (QoS) support
- Synchronization
- Hidden and Exposed Terminal problems
- Error-prone shared broadcast channel
- Distributed nature
- Mobility of nodes

Packet transmission

--- → Transmission that is not permitted

MAC Protocol Design Goals

- Distributed operation
- Provide QoS for real-time traffic
- Keep access delay low
- Utilize available bandwidth efficiently
- Ensure fair allocation of bandwidth to nodes
- Minimize control overhead

- Minimize effects of hidden and exposed terminal problems
- Scalable to large networks
- Include power control mechanisms
- Include mechanisms for adaptive data rate control
- Provide time synchronization among nodes

MAC Protocols Classification

- Contention-based protocols
- Contention-based protocols with reservation mechanisms
- Contention-based protocols with scheduling mechanisms
- Other

Ad Hoc Routing Protocol Challenges

- Mobility of nodes
- Bandwidth constraint
- Error-prone shared broadcast radio channel
- Hidden and Exposed Terminal problems
- Resource constraints

Routing Protocol Characteristics

- Fully distributed
- Adaptive to frequent topology changes caused by node mobility
- Route computation and maintenance must involve a minimum number of nodes.
- Localized (no global information)

- re.
 - Loop free and free from stale routes
 - Minimize number of packet collisions
 - Provide reliable transmissions
 - Optimally use scarce resources
 - Every node should try to store information regarding the stable local topology only
 - Should provide a certain level of QoS as demanded by the applications, and should also offer support for time-sensitive traffic

Routing Protocol Classification

- Routing information update mechanism
 - □ Proactive or table-driven protocols
 - □ Reactive or on-demand routing protocols
 - Hybrid routing protocols
- Use of temporal information for routing
 - □ Routing protocols using past temporal info
 - □ Routing protocols using future temporal info

- Routing topology
 - ☐ Flat topology routing protocols
 - □ Hierarchical topology protocols
- Utilization of specific resources
 - □ Power-aware routing
 - Geographical information assisted routing

Energy Management

- Limited energy reserve
- Difficulties in replacing batteries
- Lack of central coordination
- Selection of optimal transmission power

Energy Management Protocols Classification

- Battery Management Schemes
- Transmission Power Management Schemes
- System Power Management Schemes
 - □ Device Power Management
 - □ Processor Power Management Schemes