Knowledge Representation

CSC480: Semantic Web Technologies

Dr. Lisa Frye

frye@kutztown.edu

Kutztown University

Knowledge Representation

- Using formal symbols to represent a collection of propositions
- Reasoning
 - Draw of inferences, conclusions or judgements
 - Formal manipulation of symbols representing a collection of propositions to produce representations of new ones
- Logic
 - Study of entailment relations

Expressiveness vs. Efficiency

- Expressiveness
 - Breadth of ideas that can be represented by language
- Efficiency
 - Time, effort or cost to complete a task
- Trade-off

Logic or Knowledge Representation Languages

- Propositional Logic
- Predicate Logic
 - First Order Logic (FOL)
 - Predicate Calculus
- Description Logic

First Order Logic (FOL)

Objects

Concepts

Functions

FOL Symbols

- Logical Symbols
 - Punctuation
 - Connectives
 - Variables
- Non-logical Symbols
 - Function
 - Predicates

FOL Expressions

- Terms
 - Something in the world
- Formulas
 - Expresses a proposition
- Arity
 - Number of "arguments"

FOL Terms

- The set of terms of FOL is the least set satisfying these conditions:
 - Every variable is a term
 - If t_1, \ldots, t_n are terms, and f is a function symbol of arity n, then $f(t_1, \ldots, t_n)$ is a term.

FOL Formulas

- The set of formulas of FOL is the least set satisfying these constraints:
 - If t₁,....,t_n are terms, and P is a predicate symbol of arity n, then P(t₁,....,t_n) is a formula
 - If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula
 - If α and β are formulas, and x is a variable, then $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $\forall x.\alpha$, and $\exists x.\alpha$ are formulas.

FOL Syntax

```
S := <Sentence>;
<Sentence> := <AtomicSentence> |
     <Sentence> <Connective> <Sentence> |
     <Quantifier> <Variable>,... <Sentence> |
     "NOT" <Sentence> |
     "(" <Sentence> ")";
```

FOL Syntax (2)

FOL Syntax (3)

```
<Connective> := "AND" | "OR" |
                   "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ...;
<Variable> := "a" | "x" | "s" | ... ;
<Pre><Pre>dicate> := "Before" | "HasColor" |
                   "Raining" | ...;
<Function> := "Mother" | "LeftLegOf" | ...;
                    Fall 2014
                                      CSC480 - Dr. L. Frve
```

FOL Example

 Suppose there are three colored blocks stacked on a table. The top block is green the bottom block is not green and the middle block's color is not known. The question is whether there is a green block directly on top of a nongreen block.

FOL Example (2)

- Blocks have names a, b, c
- Predicate symbols

- G green

- O on

FOL Example (3)

- Facts in S
 - $\{O(a,b), O(b, c), G(a), \neg G(c)\}$
- These facts entail
 - There is a green block on top of a nongreen block
 - $S \models \alpha$
- α is $\exists x \exists y : G(x) \land \neg G(y) \land O(x,y)$

More FOL Symbols

- Implies
 - \Rightarrow
 - \rightarrow
 - _ _

- Defines
 - _ ≡

FOL Examples: Assumptions

- Terms
 - John
 - Jane
 - jim

- Predicates
 - Rich
 - Adult
 - Man
 - Loves
 - Woman
 - Blackmails

FOL Examples

- Jane loves either John or Jim
- All rich men in our world love Jane
- In our world, all women, except Jane, love John
- No one who loves someone will blackmail the one he or she loves
- Some adult is blackmailing John

FOL Terminological Facts

- Disjointness
- Subtypes
- Exhaustiveness
- Symmetry
- Inverses
- Type restrictions
- Full definitions

Description Logics (DL)

- Family of knowledge representation languages
- Represent knowledge of an application domain ("world")
 - Concepts
 - Properties
- Formal foundation of OWL

DL Vocabulary

- Concepts
 - Individuals
- Roles
 - Binary relationships between individuals
- Sentences
 - Expressions intended to be true or false

DL Knowledge Base

- TBox
 - Terminology
 - Concepts and properties
- Abox
 - Assertions
 - Facts associated with terminology

DL Syntax

- Logical Symbols
 - Punctuation
 - Concept-forming operators
 - Connectives and Quantifiers
 - Symbols for numbers
- Non-logical Symbols
 - Atomic concepts
 - Roles
 - Constants

DL Notation

Symbol	Description	Read
T	all concept names	top
	empty concept	bottom
П	intersection or conjunction of concepts	C and D
Ш	union or disjunction of concepts	C or D
\neg	negation or complement of concepts	not C
\forall	universal restriction	all R-successors are in C
\equiv	existential restriction	an R-successor exists in C
	Concept inclusion	all C are D
\equiv	Concept equivalence	C is equivalent to D
÷	Concept definition	C is defined to be equal to D
:	Concept assertion	a is a C
:	Role assertion Fall 2014	a is R-related to b CSC480 - Dr. L. Frye

DL Miscellaneous

- Definitions
 - Complex descriptions
- Restrictions
 - Quantified
 - Number

DL Examples: Assumptions

- Concepts
 - Person
 - Female
- Roles
 - hasChild

DL Examples

- Woman
- Man
- Mother
- Father
- Parent
- Grandmother

- MotherWithManyChildren
 - 3+
- MotherWithoutDaughter
- Wife

DL Example

