CSC411: Advanced Networks TCP Congestion Control

Note: This class lecture will be recorded!

If you do not consent to this recording, please do not ask questions via your video, audio or public chat; send your question to the instructor using the private chat.

Dr. Lisa Frye, Instructor <u>frye@kutztown.edu</u> Kutztown University

Copyright Lisa Frye 2017

Timeout and Retransmission

- Varying transmission time
- Adaptive retransmission algorithm
- Sample round trip time

Round-Trip Time

SampleRTT – time from segment sent until ACK received

Why will the SampleRTT change from segment to segment on same TCP connection?

Average RTT

- averageRTT = (α * Old_ averageRTT) + ((1 α) * SampleRTT)
- Value for α

Why do you think the averageRTT is weighted the way it is?

Timeout value

- What is a good general (larger than, smaller than, etc) value for the timeout value?
- Timeout = β * averageRTT

Calculation of RTT values

- Why does the way TCP really works make the calculation of a sample round trip time non-trivial?
- Acknowledgement ambiguitySolution?

Karn's Algorithm

- Only deal with unambiguous ACKs
- Timer backoff strategy
 - Timeout event increase timeout value
 - new_timeout = $\gamma *$ timeout
- Variation in delay

 Average RTT and variance

TCP Congestion Control

- End-end congestion control
- Network-assisted congestion control
- Congestion collapse

Congestion Control Variables

- CongWinThreshold
- Allowed window = min{CongWin, RcvWin}

TCP Congestion Control Algorithm

- Three main components
 - Additive-increase, multiplicative-decrease
 - Slow start
 - Reaction to timeout events

Slow start phase

- Start CongWin = 1 MSS
- Receive ACK, CongWin = CongWin + 1
- Increases exponentially
- Congestion avoidance
 - Only increase CongWin if all segments ACK'd

Multiplicative Decrease Congestion Avoidance

- Lost segment
 - CongWin reduced by half
 - Minimum value is 1 MSS

Additive Increase, Multiplicative Decrease (AIMD)

Reaction to Timeout Events

- Enter slow start phase
- Grow exponentially until ½ value before timeout
- Threshold value
 - Initially very large (65KB)
 - Lost segment: Threshold = $\frac{1}{2}$ * CongWin

Why have different ways to handle congestion control?