
Network Programming

Lisa Frye, Instructor
frye@Kutztown.edu
Kutztown University

Server Algorithms and Issues

Copyright Lisa Frye 2017

Note: This class lecture will be recorded!
If you do not consent to this recording, please do not ask questions via your video,
audio or public chat; send your question to the instructor using the private chat.

mailto:frye@Kutztown.edu

Fall 2021Dr. L. Frye 2

Server Types

 Iterative server
 What are some problems with this type of server?

 Concurrent server

 Connection-oriented vs. Connectionless

 Stateful vs. Stateless

Fall 2021Dr. L. Frye 3

Basic Types of Servers

Fall 2021Dr. L. Frye 4

Iterative
Connectionless

Iterative
Connection-oriented

Concurrent
Connectionless

Concurrent
Connection-Oriented

Fall 2021Dr. L. Frye 5

Iterative, Connectionless Algorithm

 Create a socket and bind to the well-known address for
the service being offered

 Repeatedly read the next request from a client, formulate
a response, and send a reply back to the client according
to the application protocol

Fall 2021Dr. L. Frye 6

Discussion

 Conduct an experiment to determine what happens if N
clients all send requests to UDPtimed simultaneously. Vary
both N, the number of senders, and S, the size of the
datagrams they send. Explain your experiment, including
the values of the inputs used and why you chose those
values. Explain why the server fails to respond to all
requests.

Fall 2021Dr. L. Frye 7

Fall 2021Dr. L. Frye 8

Iterative, Connection-oriented Algorithm

 Create a socket and bind to the well-known address for the
service being offered

 Place the socket in passive mode, making it ready for use by a
server

 Accept the next connection request from the socket, and
obtain a new socket for the connection

 Repeatedly read a request from the client, formulate a
response, and send a reply back to the client according to the
application protocol

 When finished with a particular client, close the connection and
return to step 3 to accept a new connection

Fall 2021Dr. L. Frye 9

Discussion

 Calculate how long an iterative server takes to transfer a
200 MB file if the internet has a throughput of 2.3 KBps

 If 20 clients each send 2 requests per second to an
iterative server, what is the maximum time that the
server can spend on each request?

Fall 2021Dr. L. Frye 10

Concurrent Servers

 Multiple threads or multiple processes

 Main thread or Parent process
 Begins execution

 Listens on socket (passive socket)

 New connection from client

 Create sub-thread or child process to handle connected client
communication

Fall 2021Dr. L. Frye 11

Fall 2021Dr. L. Frye 12

Concurrent, Connectionless Algorithm

 Main Thread or Parent process
 Create a socket and bind to the well-known address for the service

being offered. Leave the socket unconnected.

 Repeatedly call recvfrom to receive the next request from a
client, and create a new sub-thread (possibly in a new process) to
handle the response

 Sub-Thread or Child process
 Begin with a specific request from the main thread as well as

access to the socket

 Form a reply according to the application protocol and send it
back to the client using sendto

 Exit after handling the one request

Fall 2021Dr. L. Frye 13

Concurrent, Connection-oriented Algorithm

 Main Thread or Parent process
 Create a socket and bind to the well-known address for the service being

offered. Leave the socket unconnected.

 Place the socket in passive mode, making it ready for use by a server.

 Repeatedly call accept to receive the next request from a client and
create a new sub-thread or process to handle the request.

 Sub-thread or Child process
 Begin with a connection passed from the main thread or parent process

 Interact with the client using the connection: read request(s) and send
back response(s)

 Close the connection and exit. The sub-thread or process exits after
handling all requests from one client.

Fall 2021Dr. L. Frye 14

pid_t pid;
int listenfd, connfd;

listenfd = socket(…);

// fill in sockaddr_in with server’s well-known port
bind(listenfd, …);
listen(listenfd, LISTENQ);

for (; ;) { // while (1)
connfd = accept(listenfd, …);
if ((pid = fork()) == 0) {

close(listenfd); // child closed listening socket (not if using threads)
doit(connfd); // process the request
close(connfd); // done with this client (close for processes and threads)
exit(0); // child terminates

} // end if
close(connfd); // parent closes connected socket (not if using threads)

} // end for Fall 2021

Dr. L. Frye

15

Concurrent, Connection-oriented
Server Example

 sockets/TCPecho

Fall 2021Dr. L. Frye 16

Example

 Sockets/TCPsockets/sum/client_bad.c

Fall 2021Dr. L. Frye 17

Client or Server Ends

 How does the client or server know when the client
disconnects?

 Possible solutions
 Add a keepalive message to the application protocol

 Explicit timer

 Manipulate TCP/IP keepalive packet settings

Fall 2021Dr. L. Frye 18

	Network Programming
	Slide Number 2
	Server Types
	Basic Types of Servers
	Slide Number 5
	Iterative, Connectionless Algorithm
	Discussion
	Slide Number 8
	Iterative, Connection-oriented Algorithm
	Discussion
	Concurrent Servers
	Slide Number 12
	Concurrent, Connectionless Algorithm
	Concurrent, Connection-oriented Algorithm
	Slide Number 15
	Concurrent, Connection-oriented Server Example
	Example
	Client or Server Ends

