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Server Types

 Iterative server
 What are some problems with this type of server?

 Concurrent server

 Connection-oriented vs. Connectionless

 Stateful vs. Stateless
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Basic Types of Servers
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Iterative, Connectionless Algorithm

 Create a socket and bind to the well-known address for 
the service being offered

 Repeatedly read the next request from a client, formulate 
a response, and send a reply back to the client according 
to the application protocol
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Discussion

 Conduct an experiment to determine what happens if N 
clients all send requests to UDPtimed simultaneously. Vary 
both N, the number of senders, and S, the size of the 
datagrams they send. Explain your experiment, including 
the values of the inputs used and why you chose those 
values. Explain why the server fails to respond to all 
requests.
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Iterative, Connection-oriented Algorithm

 Create a socket and bind to the well-known address for the 
service being offered

 Place the socket in passive mode, making it ready for use by a 
server

 Accept the next connection request from the socket, and 
obtain a new socket for the connection

 Repeatedly read a request from the client, formulate a 
response, and send a reply back to the client according to the 
application protocol

 When finished with a particular client, close the connection and 
return to step 3 to accept a new connection
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Discussion

 Calculate how long an iterative server takes to transfer a 
200 MB file if the internet has a throughput of 2.3 KBps

 If 20 clients each send 2 requests per second to an 
iterative server, what is the maximum time that the 
server can spend on each request?
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Concurrent Servers

 Multiple threads or multiple processes

 Main thread or Parent process
 Begins execution

 Listens on socket (passive socket)

 New connection from client

 Create sub-thread or child process to handle connected client 
communication
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Concurrent, Connectionless Algorithm

 Main Thread or Parent process
 Create a socket and bind to the well-known address for the service 

being offered. Leave the socket unconnected.

 Repeatedly call recvfrom to receive the next request from a 
client, and create a new sub-thread (possibly in a new process) to 
handle the response

 Sub-Thread or Child process
 Begin with a specific request from the main thread as well as 

access to the socket

 Form a reply according to the application protocol and send it 
back to the client using sendto

 Exit after handling the one request
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Concurrent, Connection-oriented Algorithm

 Main Thread or Parent process
 Create a socket and bind to the well-known address for the service being 

offered. Leave the socket unconnected.

 Place the socket in passive mode, making it ready for use by a server.

 Repeatedly call accept to receive the next request from a client and 
create a new sub-thread or process to handle the request.

 Sub-thread or Child process
 Begin with a connection passed from the main thread or parent process

 Interact with the client using the connection: read request(s) and send 
back response(s)

 Close the connection and exit. The sub-thread or process exits after 
handling all requests from one client.
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pid_t pid;
int listenfd,  connfd;

listenfd = socket(…);

// fill in sockaddr_in with server’s well-known port
bind(listenfd, …);
listen(listenfd, LISTENQ);

for ( ; ; )  {       // while (1)
connfd = accept(listenfd, …);      
if  ((pid = fork()) == 0)  {

close(listenfd); // child closed listening socket (not if using threads)
doit(connfd); // process the request
close(connfd); // done with this client (close for processes and threads)
exit(0); // child terminates

}     // end if
close(connfd); // parent closes connected socket (not if using threads)

}   // end for Fall 2021

Dr. L. Frye

15



Concurrent, Connection-oriented 
Server Example

 sockets/TCPecho
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Example

 Sockets/TCPsockets/sum/client_bad.c
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Client or Server Ends

 How does the client or server know when the client 
disconnects? 

 Possible solutions
 Add a keepalive message to the application protocol

 Explicit timer 

 Manipulate TCP/IP keepalive packet settings
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