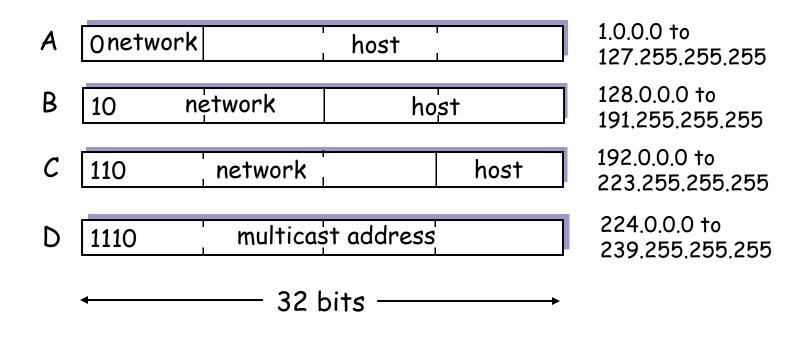
Computer Networks

Lisa Frye, Instructor frye@kutztown.edu

Kutztown University


INTERNET PROTOCOL (IP) OVERVIEW

- Primary network-layer protocol
- Unreliable, connectionless delivery mechanism
- Packet routing
- Packet Fragmentation

INTERNET PROTOCOL (IP) ADDRESSES

- Interface
- 32-bits separated into four fields of 1 byte each
- Represented in decimal dotted notation
- Identifies a network id and a host id

Special network numbers $\Box 0$ – this network □ 255 – broadcast □ 127 - loopback Special host numbers $\Box 0$ – this host 255 - broadcast

Classes (Available Networks/Available Hosts)

Class	Available Networks	Available Hosts
Α	126	16,777,214
В	16,384	65,534
С	2,097,151	254

Class	Class ID	IP range	Default mask
А	0	1-126	255.0.0.0
В	10	128-191	255.255.0.0
С	110	192-223	255.255.255.0
D	111	224-247	Used for multicast
Е	11111	248-254	Reserved for future use

- Loopback testing
- Subnets

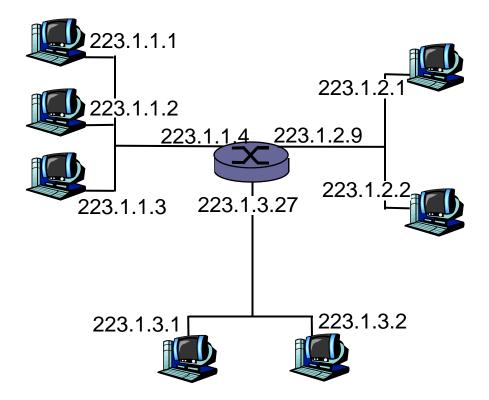
Subnet Masks

Number of Mask Bits	Subnet Mask	Available SubNets	Available Hosts
2	255.255.255.192	2	62
3	255.255.255.224	6	30
4	255.255.255.240	14	14
5	255.255.255.248	30	6
6	255.255.255.252	62	2

Write the IP address 129.17.129.97 in its binary form.

- 1. 1000001 00100001 1000001 01100001
- 2. 1000001 00010001 1000001 01000111
- 3.
 11111111
 00010001
 11111111
 01100001
- 4. 1000001 00010001 1000001 01100001
- 5.
 1111111100100001111111111010000111

- Consider an Internet address of the form 129.19.40.0/23. What does the /23 signify?
 - 1. IP address of specific host
 - 2. Number of bits in network portion
 - 3. Number of bits in subnet portion
 - 4. Number of bits in host portion



Consider an IP subnet with prefix 129.17.129.97/27. What is the range of IP addresses that can be assigned to this subnet?

- 1. 129.17.129.96 129.17.129.127
- 2. 129.17.129.97 129.17.129.128
- 3. 129.17.129.64 129.17.129.95
- 4. 129.17.129.65 129.17.129.96

Network Layer - Source to Destination

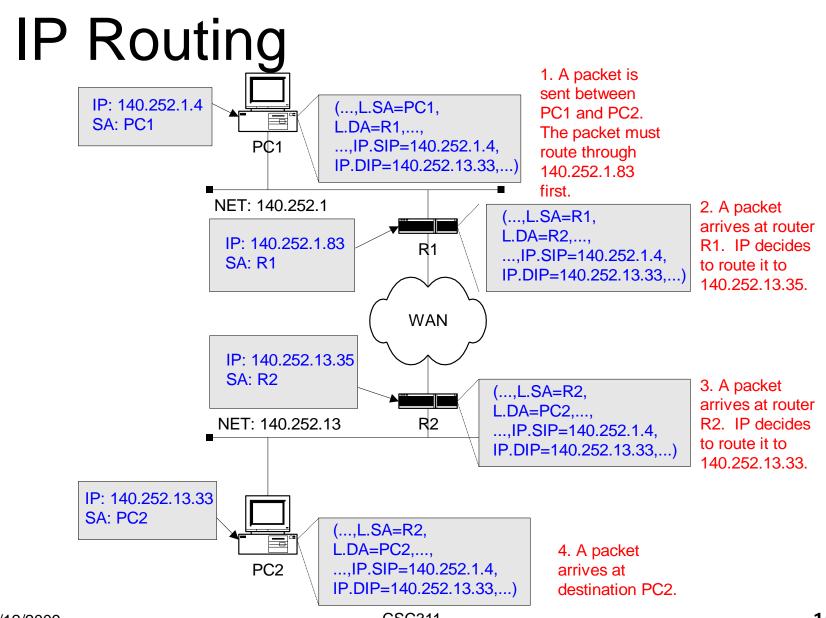
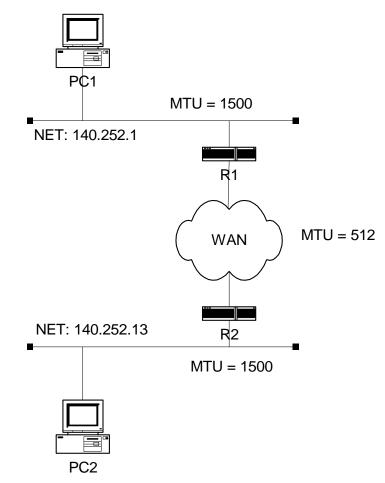

32 bits						
Version Header length Type of service Datagram length (bytes)						
	16-bit Id	entifier	Flags	13-bit Fragmentation offset		
Time-to-live Upper-layer protocol			Header checksum			
32-bit Source IP address						
32-bit Destination IP address						
Options (if any)						
Data						

Figure 4.13 • IPv4 datagram format


CSC311

- Suppose Host A sends Host B a TCP segment encapsulated in an IP datagram. When Host B receives the datagram, how does the network layer in Host B know it should pass the segment to TCP rather than to UDP or something else?
 - 1. Destination port number
 - 2. Destination address
 - 3. TOS field
 - 4. Protocol field

IP Fragmentation

•MTU - Maximum Transfer Unit

•Examples

- •Token Ring (16 Mb/s) MTU is 17914 bytes
- •Ethernet MTU is 1500

bytes

•FDDI MTU is 4352 bytes

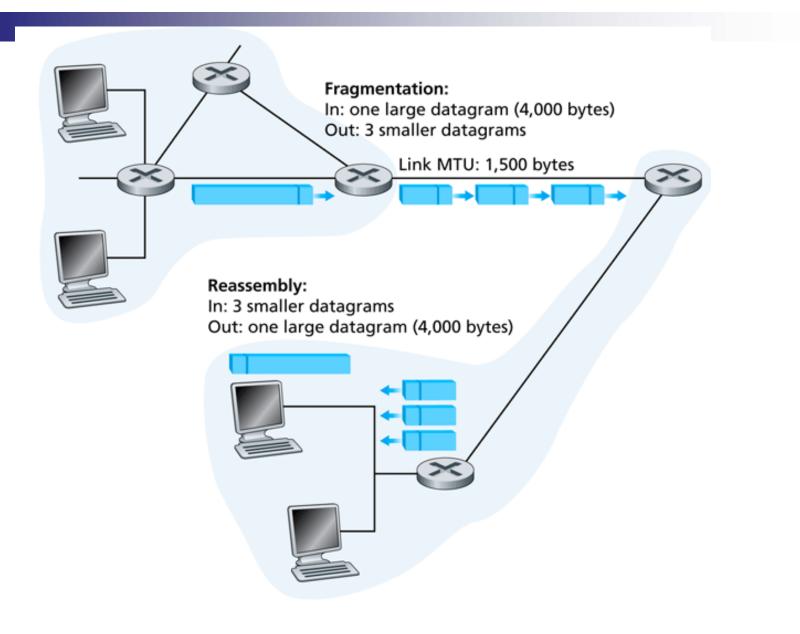


Figure 4.14 • IP fragmentation and reassembly

IP Fragmentation and Reassembly

length	ID	fragflag	offset	
=3980	=71	=0	=0	

One large datagram becomes several smaller datagrams

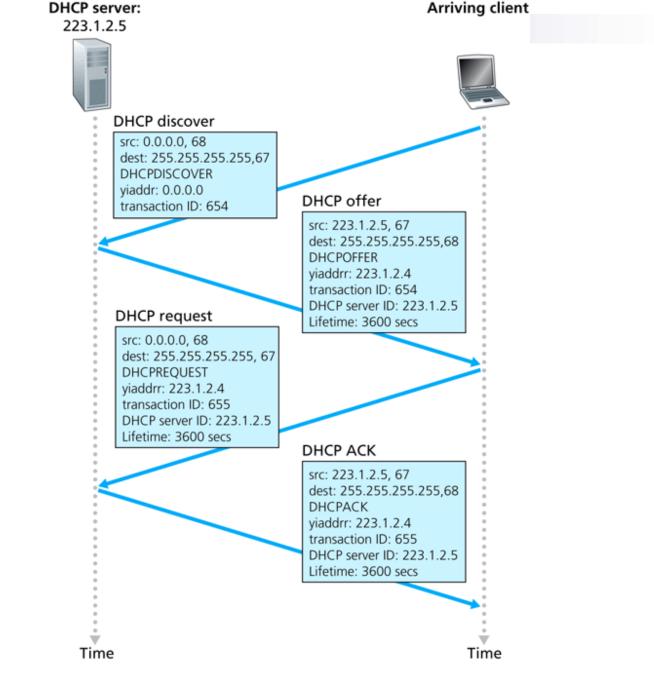
length	ID	fragflag	offset
=1500	=71	=1	=0

length	ID	fragflag	offset
=1500	=71	=1	=1480

length	ID	fragflag	offset	
=1040	=71	=0	=2960	

- Consider sending a 2,000-byte datagram into a link with a MTU of 980 bytes. Suppose the original datagram has the identification number 227. How many fragments are generated?
 - 1. 2
 - 2. 3
 - 3. 4
 - 4. 5

For each fragment, what is its size, what is the value of its identification, fragment offset, and fragment flag? Consider sending a 2,500-byte datagram into a link that has an MTU of 600 bytes. Suppose the original datagram is stamped with the identification number 41. How many fragments are generated?



For each fragment, what is its size, what is the value of its identification, fragment offset, and fragment flag?

DHCP

Dynamic Host Configuration Protocol

- DHCP Discovery Message
- DHCP Offer Message
- Client responds backDHCP ACK

6/12/2009

Figure 4.21 DHCP client-server interaction

CIDR

Wasted IP addresses Classful IP Addresses

Classless Interdomain Routing Classles IP Addresses

a.b.c.d/x

NAT

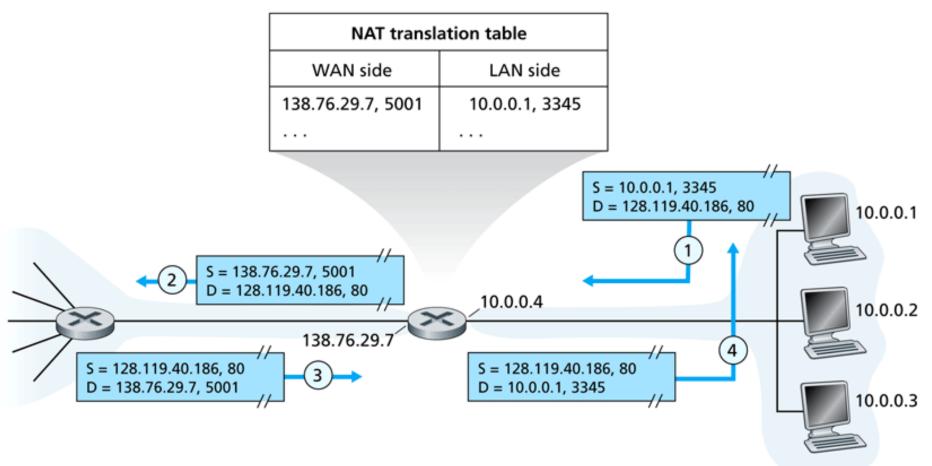


Figure 4.22
 Network address translation

CSC311

ICMP

- Internet Control Message Protocol
- Considered part of IP
- Really lies just above IP

PingTraceroute

Code	Description	
0	echo reply (to ping)	
0	destination network unreachable	
1	destination host unreachable	
2	destination protocol unreachable	
3	destination port unreachable	
6	destination network unknown	
7	destination host unknown	
0	source quench (congestion control)	
0	echo request	
0	router advertisement	
0	router discovery	
0	TTL expired	
0	IP header bad	
	0 0 1 2 3 6 7 0 0 0 0 0 0 0 0 0 0 0	

Figure 4.23 ICMP message types

IPv6

32-bit address space of IPv4 was being used up

Uses 128-bit addresses

IPv6 Datagram Format

32 bits

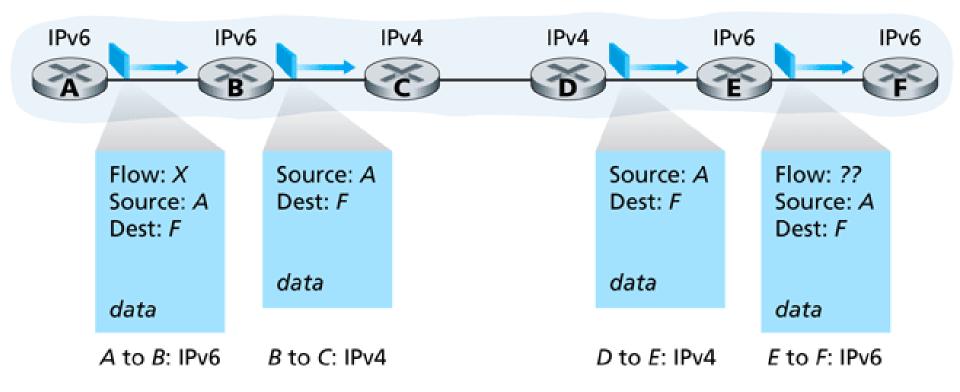

Version	Traffic class	Flow label			
	Hop limit				
Source address (128 bits)					
Destination address (128 bits)					
Data					

Figure 4.24 IPv6 datagram format

New Features

- Expanded IP address size
- Streamlined 40-byte header
- New type of address anycast address
- Dropped some IPv4 header fields
 - □ Fragmentation / Reassembly
 - □ Header checksum
 - Options
- Flow labeling and priority
- New version of ICMP

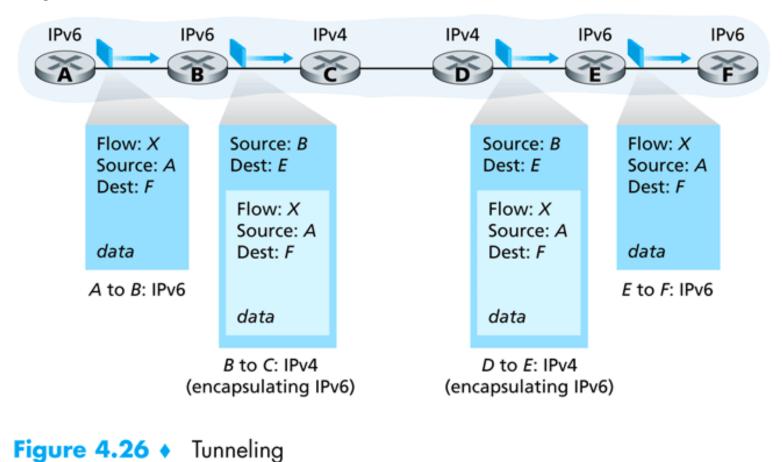
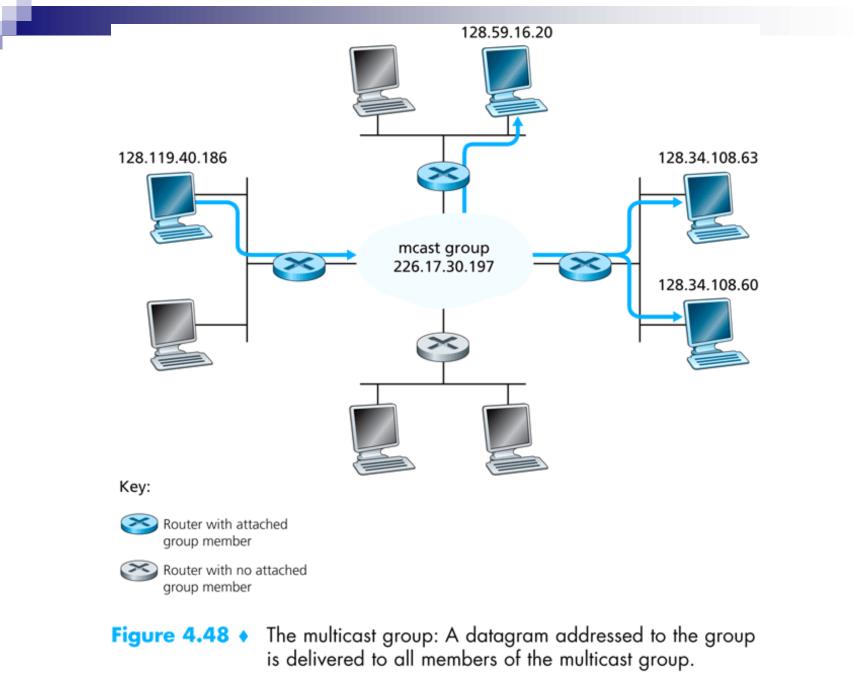
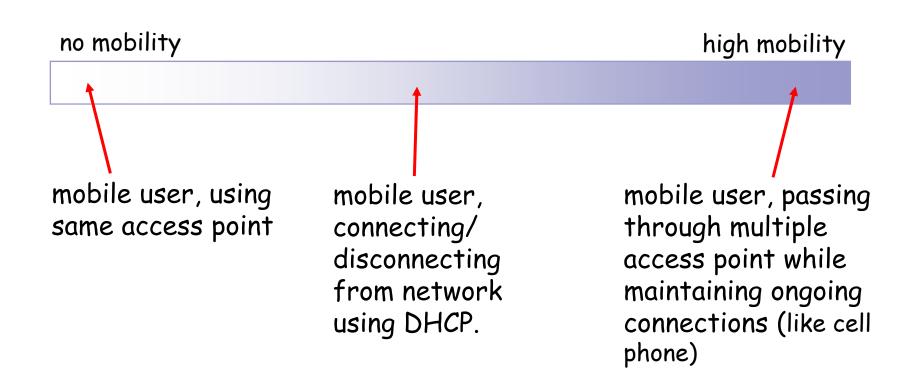

Migrating to IPv6

Figure 4.25 A dual-stack approach


IPv6 IPv6 IPv6 IPv6 IPv6 IPv6

Physical view


CSC311

- It has been said that when IPv6 tunnels through IPv4 routers, IPv6 treats the IPv4 tunnels as link-layer protocols. Do you agree with this statement?
 - Yes true
 - No false

CSC311

Mobility and the Network Layer

Mobile IP

Ad hoc networking

Mobile IPRFC 3220