Computer Networks

Lisa Frye, Instructor frye@kutztown.edu Kutztown University

TRANSMISSION CONTROL PROTOCOL OVERVIEW

- Provides a connection-oriented reliable packet delivery by
\square Sending acks
\square Maintaining a retransmission timer
\square Checksum on header and data
\square Segment and resequence data
\square Checks for and discards duplicates
\square Provides flow control

TCP Connections

- Not end-to-end TDM or FDM circuit
- Not a virtual circuit
- Provides for full-duplex data transfer
- Point-to-Point

TCP Connections

Figure 3.28 TCP send and receive buffers

TCP Applications

- TCP used by services such as:
\square TELNET
\square FTP
\square SMTP
\square WWW

TCP Segment Structure

32 bits
।

Source port \#			Dest port \#
Sequence number			
Acknowledgment number			
Header length	Unused		Receive window
Internet checksum			Urgent data pointer

Options

Data

Figure 3.29 TCP segment structure

(TCP) Segment Structure

TCP FIELD	DESCRIPTION
Source Port Number	Identifies the sending application
Destination Port Number	Identifies the receiving application
Sequence Number	Identifies the byte in the stream of data the sender experpects the to receceive.
Acknowledgement Number	4-bit Header Length
Length	Urgent Pointer
URG	Acknowledgment Number is valid
ACK	Receiver should pass this data to the application as soon as possible
PSH	Reset the connection
RST	Synchronize sequence numbers to initiate a connection
SYN	The sender is finished sending data
FIN	The number of outstanding segments allowed at any one time without being acknowledged
Window Size	Covers the header and data
Checksum	Positive offset that must be added to the sequence number to yield the number of the last byte of data
Urgent Pointer	usually Maximum Segment Size (MSS)
Options	

TCP Port Numbers

Decimal	Keyword		UNIX Keyword
Description			
9	DISCARD	discard	Discard all incoming data port
19	CHARGEN	chargen	Character Generator
20	FTP-Data	ftp-data	File transfer data port
21	FTP-CMD	ftp	File transfer command port
23	TELNET	telnet	Telnet remote login port
25	SMTP	smtp	Simple Mail Transport Protocol
79	FINGER	finger	Finger
80	HTTP	http	Hypertext Transport Protocol
88	Kerberos	kerberos	Authentication Protocol
110	POP3	pop3	pc mail retrieval service port
118	NNTP	nntp	network news access port
179	BGP	bgp	border gateway protocol
513	Rlogin	rlogin	Remote login
514	Rexec	Recexec	Remote execute

Sequence Numbers

- Sequence Numbers
\square First byte numbered 0
\square File size 500,000 bytes
\square MSS 1,000 (500 segments)
\square Sequence \#1=0, Sequence \#2=1000, Sequence \#3=2000, etc.
■ Maximum Segment Size (MSS)
- Maximum Transfer Unit (MTU)

Acknowledgement Numbers

- Sequence number of next segment expected
\square Received bytes 0 through 535
\square Waiting for byte 536
\square Puts 536 in acknowledgement number field of segment
- Buffer out-of-order segments
- Host A is sending Host B a large file over a TCP connection. Assume Host B has no data to send Host A. Host B will not send acknowledgements to Host A because Host B cannot piggyback the acknowledgements on data.

TCP CONNECTION ESTABLISHMENT

- Requesting end sends a SYN segment
\square port number of server
\square initial sequence number
- Server responds with its own SYN
\square contains server's ISN
\square Acks the client's SYN by ACK the client's ISN + 1
- The client must acknowledge this SYN
\square ACKs the server's ISN + 1

Client host

Figure 3.39 , TCP three-way handshake: segment exchange

TCP Connection

Figure 3.28 TCP send and receive buffers

Reliable-Data Transfer Service

- Sender is passed data from applicationlayer. Converts frames into segments. Passes segments to the Network-layer.
- When segment is sent to Network layer, a timer starts for that segment. If timer expires, timeout event occurs.
- Arrival of an acknowledgment segment from the receiver.
- Suppose Host A sends two TCP segments back to back to Host B over a TCP connection. The first segment has sequence number 90 ; the second has sequence number 110. How much data is in the first segment?

1. 10 bytes
2. 16 bytes
3. 20 bytes
4. 30 bytes

- Suppose Host A sends two TCP segments back to back to Host B over a TCP connection. The first segment has sequence number 90; the second has sequence number 110. Suppose that the first segment is lost but the second segment arrives at B. In the ACK sent from B to A, what will be the acknowledgement number?

1. 90
2. 110
3. 130

TCP Flow Control

- Receive Buffers
- Buffer Overflow
- Receive Window

TCP Congestion Control

- End-end congestion control
- Controls the amount of traffic on the network

