
Computer Networks

Lisa Frye, Instructor
frye@kutztown.edu
Kutztown University

mailto:frye@kutztown.edu

CSC311 26/12/2009

CSC311 36/12/2009

Reliable data transfer: getting started
incrementally develop sender, receiver
sides of reliable data transfer protocol (rdt)
consider only unidirectional data transfer

but control info will flow on both directions!
use finite state machines (FSM) to specify
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

event
actions

CSC311 46/12/2009

Rdt1.0: reliable transfer over a reliable channel

underlying
channel
perfectly
reliable

no bit errors
no loss of
packets

CSC311 56/12/2009

Rdt2.0: channel with bit errors
underlying channel may flip bits in packet

recall: UDP checksum to detect bit errors
the question: how to recover from errors:

acknowledgements (ACKs):
negative acknowledgements (NAKs):

new mechanisms in rdt2.0 (beyond
rdt1.0):

error detection
receiver feedback: control msgs (ACK,NAK) rcvr-
>sender

CSC311 66/12/2009

CSC311 76/12/2009

rdt2.0: in action (no errors)

sender FSM receiver FSM

CSC311 86/12/2009

rdt2.0: in action (error scenario)

sender FSM receiver FSM

CSC311 96/12/2009

Problems with rdt 2.0

What if ACK or NAK packet is corrupt?

How should the protocol recover from
errors in ACK or NAK packets???

CSC311 106/12/2009

CSC311 116/12/2009

CSC311 126/12/2009

In rdt 2.1 is it possible for the sender and
receiver to enter into a deadlock state?

Yes – true
No - false

CSC311 136/12/2009

rdt2.2: a NAK-free protocol
Instead of NAK, receiver sends ACK for last
packet received OK

Receiver must explicitly include seq # of pkt being
ACKed

Duplicate ACK at sender results in same
action as NAK: retransmit current packet

CSC311 146/12/2009

CSC311 156/12/2009

CSC311 166/12/2009

rdt3.0: channels with errors and loss

New assumption: underlying channel can also
lose packets (data or ACKs)

checksum, seq. #, ACKs, retransmissions will be
of help, but not enough

CSC311 176/12/2009

CSC311 186/12/2009

rdt3.0 in action

CSC311 196/12/2009

rdt3.0 in action

CSC311 206/12/2009

In protocol rdt 3.0, the ACK packets flowing
from the receiver to the sender do not have
sequence numbers (although they do have an
ACK field that contains the sequence number
of the packet they are acknowledging). Why is
it that our ACK packets do not require
sequence numbers?

1. No need to know if an ACK is a duplicate or not
2. ACKS do not have to be received in order
3. No need to know the size of the ACK packet

CSC311 216/12/2009

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”,

yet-to-be-acknowledged pkts
range of sequence numbers must be increased
buffering at sender and/or receiver

Pipelined protocols -> sliding window protocols

CSC311 226/12/2009

Go-Back-N Protocol
A sliding-window protocol

Timeouts
Cumulative acknowledgement
Performance
Selective-Repeat Protocols

CSC311 236/12/2009

rdt 3.0 Receiver

Draw the FSM for the receiver side of the
protocol rdt 3.0

NOTE: Table 3.1 useful for rdt concepts

	Computer Networks
	Slide Number 2
	Reliable data transfer: getting started
	Rdt1.0: reliable transfer over a reliable channel
	Rdt2.0: channel with bit errors
	Slide Number 6
	rdt2.0: in action (no errors)
	rdt2.0: in action (error scenario)
	Problems with rdt 2.0
	Slide Number 10
	Slide Number 11
	Slide Number 12
	rdt2.2: a NAK-free protocol
	Slide Number 14
	Slide Number 15
	rdt3.0: channels with errors and loss
	Slide Number 17
	rdt3.0 in action
	rdt3.0 in action
	Slide Number 20
	Pipelined protocols
	Go-Back-N Protocol
	rdt 3.0 Receiver

