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Reliable data transfer: getting started
incrementally develop sender, receiver 
sides of reliable data transfer protocol (rdt)
consider only unidirectional data transfer

but control info will flow on both directions!
use finite state machines (FSM)  to specify 
sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

event
actions
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Rdt1.0: reliable transfer over a reliable channel

underlying 
channel 
perfectly 
reliable

no bit errors
no loss of 
packets
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Rdt2.0: channel with bit errors
underlying channel may flip bits in packet

recall: UDP checksum to detect bit errors
the question: how to recover from errors:

acknowledgements (ACKs):
negative acknowledgements (NAKs):

new mechanisms in rdt2.0 (beyond 
rdt1.0):

error detection
receiver feedback: control msgs (ACK,NAK) rcvr-
>sender



CSC311 66/12/2009



CSC311 76/12/2009

rdt2.0: in action (no errors)

sender FSM receiver FSM
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rdt2.0: in action (error scenario)

sender FSM receiver FSM
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Problems with rdt 2.0

What if ACK or NAK packet is corrupt?

How should the protocol recover from 
errors in ACK or NAK packets???
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In rdt 2.1 is it possible for the sender and 
receiver to enter into a deadlock state?

Yes – true
No - false
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rdt2.2: a NAK-free protocol
Instead of NAK, receiver sends ACK for last 
packet received OK

Receiver must explicitly include seq # of pkt being 
ACKed 

Duplicate ACK at sender results in same 
action as NAK: retransmit current packet
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rdt3.0: channels with errors and loss

New assumption: underlying channel can also 
lose packets (data or ACKs)

checksum, seq. #, ACKs, retransmissions will be 
of help, but not enough
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rdt3.0 in action
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rdt3.0 in action
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In protocol rdt 3.0, the ACK packets flowing 
from the receiver to the sender do not have 
sequence numbers (although they do have an 
ACK field that contains the sequence number 
of the packet they are acknowledging). Why is 
it that our ACK packets do not require 
sequence numbers?

1. No need to know if an ACK is a duplicate or not
2. ACKS do not have to be received in order
3. No need to know the size of the ACK packet
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Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, 

yet-to-be-acknowledged pkts
range of sequence numbers must be increased
buffering at sender and/or receiver

Pipelined protocols -> sliding window protocols
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Go-Back-N Protocol
A sliding-window protocol

Timeouts
Cumulative acknowledgement
Performance
Selective-Repeat Protocols
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rdt 3.0 Receiver

Draw the FSM for the receiver side of the 
protocol rdt 3.0

NOTE: Table 3.1 useful for rdt concepts
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