Computer Networks

Lisa Frye, Instructor frye@kutztown.edu

Kutztown University

The Domain Name System (DNS)

Hostname

- IP addresses = 32-bit integers
 - □ 127.7.106.83
- We'd like
 - High-level names: human-readable identifiers
 - □ A mechanism to
 - Assign/manage names
 - Map between
 - Names and IP addresses
 - IP addresses and names

DNS Syntax

Domain names

Example: "kutztown.edu" is a domain name

- Labels
 - Example: "prime", "cs", "kutztown", and "edu" are labels
- Delimiter
- Suffix

Example: "cs.kutztown.edu", "kutztown.edu", and "edu" are domains

DNS

- A distributed database implemented in a hierarchy of name servers
- An application-layer protocol that allows hosts and name servers to communicate in order to provide a translation service

Other DNS Services

Host Aliasing

Mail server aliasing

Local distribution

Naming Options

Flat Names

□ Simple, convenient

- Does not scale well
- Hierarchical names
 - Distributed responsibility
 - □ Scalable

Delegating Naming Authority

- Centralized vs. Distributed
- Network Solutions, Inc.
- Educause
- The federal government
- The U.S. military
- The state of Pennsylvania
- The RIPE Network Coordination Centre

The DNS Name Hierarchy

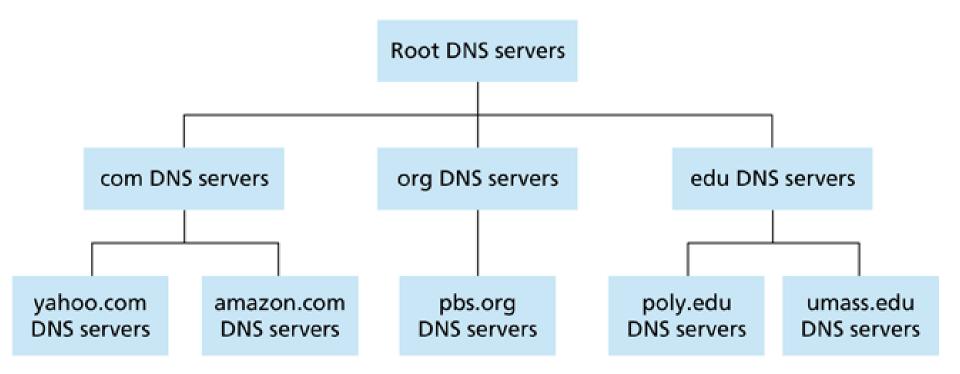


Figure 2.19

 Portion of the hierarchy of DNS servers

DNS Name Servers

- Root Name Servers
- Top-Level Domain (TLD) Name Servers
- Authoritative Name Servers

Local Name Servers

Root Name Servers

Figure 2.20
 DNS root servers in 2007 (name, organization, location)

DNS Name Servers

- Multiple domains
- Multiple simultaneous connections
- Distribute information

Mapping Names to Addresses

- The DNS algorithm for mapping between IP addresses and names
 - Distributed
 - Efficient
 - □ General-purpose
 - Reliable

DNS Parts

Resolver

Nslookup

Server BIND

DNS Name Resolution

Recursive

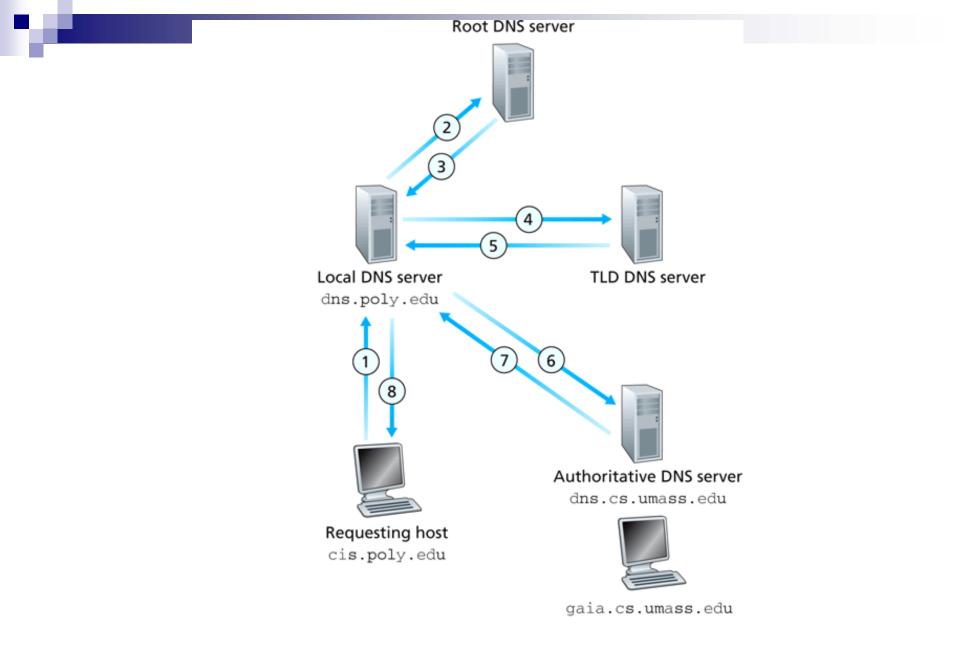


Figure 2.21 • Interaction of the various DNS servers

CSC311

DNS Name Resolution

- Client creates a domain name query
- Name server receives a query:
 - □ Is the server an authority for the name?
 - □ Is the response in the cache?
 - □ Did the client request recursive resolution?
 - □ Did the client request iterative resolution?
- For name resolution to work:
 - Name server
 - Root server

DNS - Efficient Name Resolution

Top-down name resolution is inefficient

DNS uses bottom-up name resolution

DNS Name Caching

Servers maintain a caches

Recently used names

Server that provided resolution for each name

Cache entries are flushed

DNS Name Caching Sequence

Name server receives a query:
Is the server an authority for the name?
Is the name in the cache?
Client receives answer quickly but it may be out of date

Resource Records

Name Value Type $\Box A$ $\square NS$ TTL

DNS Messages

Flags	
Number of answer RRs	
Number of additional RRs	
tions	
wers	
ority	
Additional information	

Inverse Mappings

- Inverse Queries
- in-addr.arpa
- Pointer Query
- 156.12.23.5 → 5.23.12.156.in-addr.arpa

Dynamic DNS

RFC 2136UPDATE option

Windows 2000Newer versions of BIND

DNS in Action

nslookup

KU files