Kutztown University Kutztown, Pennsylvania

Computer Science Department College of Liberal Arts and Sciences

I. Course Description: CSC 136: Computer Science II

This course extends the topics developed in CSC 135. Also covered are concepts of data abstraction and encapsulation as part of the object-oriented paradigm, pointers, recursion, and beginning data structures such as stacks and queues.

3 s.h. 3 c.h. Prerequisite: CSC 135 or equivalent with a C or better.

II. Course Rationale

This course is a second year programming course for computer science majors. This course is required by all computer science majors to complete the first year concepts in programming. This course is a prerequisite for many other computer science courses as it provides the basic understanding of elementary data structures and object-oriented programming.

III. Course Objectives

The student will:

- A. Incorporate object-oriented techniques into design and implementation of basic objects such as list containers.
- B. Implement pointers and address issues related to their use.
- C. Demonstrate the ability to debug programs.
- D. Employ templates to create generic functions and object-types.
- E. Explain basic recursive functions.
- F. Describe an abstract data type.

IV. Course Assessment

The course assessment will be a subset of tests, projects, homework assignments, and final exam.

V. Course Outline

- A. Review of CSC 135: arrays, files, search/sort (as necessary)
- B. Structs (brief)
- C. Classes
 - 1. basics
 - a. data attributes
 - b. member functions
 - i. mutators (sets)
 - ii. facilitators
 - iii. inspectors (gets)

- c. constructors
- 2. function overloading
- 3. overloading of operators
- 4. Declaration in header, implementation in .cpp, application/driver
 - a. Class Definition (header (.h) files)
 - b. ifndef for protection from multiple includes
 - c. public, private, protected the information hiding principle
 - d. friend functions
 - e. Class Implementation (source (.cpp) files)
 - f. implementation of friends
- 5. Programming with classes
 - a. Interaction between classes and applications
 - b. makefiles
- D. Pointers
 - 1. to simple types
 - 2. as data attributes in classes
 - a. copy constructor, = operator, destructor
 - b. shallow vs. deep copy
 - c. Array as a class
- E. Debugging Tool
 - 1. single file program
 - 2. Multiple file projects
- F. Templates
 - 1. Functions
 - 2. Classes
 - a. List Container
 - b. h file implementation
 - c. two-file implementation
 - i. Explicit Instantiation
- G. Linked Lists
 - 1. Nodes
- H. Simple Recursion
- I. Stacks
 - 1. Abstract Data Type (ADT)
 - 2. Implementations
 - 3. Applications
- J. Queues
 - 1. ADT
 - 2. Implementations
 - 3. Applications
- K. Additional Data Structures
 - 1. STL vectors
 - 2. Trees

VI. Instructional Resources

Childs, J. D. C++: classes and data structures, Harlow: Prentice Hall, (2007).

Dale, N., Weems, C., Richards, T., C++ Plus Data Structures 6th Edition, Jones & Bartlett, (2016).

Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R. *Structured Programming*. San Diego, CA: Academic Press, (1972).

Friedman, F. L., Koffman, E. B., *Problem solving, abstraction, and design using C++/6th ed.* Boston: Pearson Addison-Wesley, (2010).

Gaddis, T., Walters, J., and Muganda, G., *Starting Out With C++*, 4th Edition, El Granada, CA: Scott-Jones, (2004).

Gaddis, T., Starting out with C++: From control structures through objects, 8^{th} ed. Boston: Addison-Wesley, (2015).

Grimes, R., Beginning C++ Programming, Packt Publishing, (2017).

Kernighan, B. S. and Plauger, P. J. The Elements of Programming Style. Highstown, NJ: McGraw-Hill, Inc. (1974).

Knuth, D. E. The Art of Computer Programming - Fundamental Algorithms. Vol. 1. (2nd edition) Reading, MA: Addison-Wesley (1973).

Liang, Y. D., *Introduction to programming with C++ : comprehensive version*, Upper Saddle River, NJ: Pearson/Prentice Hall, (2007).

Main, M, Data Structures and Other Objects in C++, 4th ed. Reading, MA: Addison-Wesley, (2010).

Malik, D.S., C++ Programming: From Problem Analysis to Program Design (Introduction to Programming), 7th ed. Cambridge, MA: Course Technology (2014)

Savitch, W. J., *Problem solving with C++ 9th ed.* Boston: Pearson/Addison-Wesley, (2014).

Stroustrup, B., *The C++ Programming Language*, Reading, Mass. : Addison-Wesley, (1986)

Van Thesel, D. *Program Style, Design, Efficiency, Debugging, and Testing.* Englewood Cliffs, NJ: Prentice-Hall, Inc. (1978).

Wirth, N. Algorithms + Data Structures = Programs. Englewood Cliffs, NJ: Prentice Hall (1976).

Periodicals:

Journal of the ACM
Communications of the ACM
Computing Reviews
Computing Surveys
Computerworld
Byte
On-Computing
Popular Computing