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In this supplement we provide additional details for this paper. Specifically we illustrate feasibility for our mechanism
in two different setups as mentioned in our manuscript: (1) Optical Lattice for single atoms (we present two schemes)
(2) Optical dipole traps for aggregates of atoms. We also provide details of our noise analysis.

I. GENERAL CONSIDERATIONS AND ASSUMPTIONS

A. Swappability

A scalable quantum computer requires the operation of swapping two qbits. In our case the two qbits are encoded
by two different species. We can ensure swappability of species A and B by sequencing the basic CNOT gate we
describe in the paper to create a SWAP gate as follows: SWAP(x, y) =CNOT(x, y)∗CNOT(y, x)∗CNOT(x, y) where
CNOT(x,y) transforms x → x and y → x + y (mod2). This requires that we need to be able to change the role of the
two bits: Each bit must be at least once controlled and at least once controlling, meaning that the roles of A and B
have to be switchable.

We can implement this by using two triple wells that can be switched between two orthogonal ‘T-shaped’ configu-
ration as shown in Fig. 1 with the dynamics of each species confined to only one direction. The role of the two species
can then be switched by simply switching between the two configurations after each cycle. This implicitly requires
that each species is independently trapped by separate species specific potential. We label the direction of dynamical
evolution of the controlled bit as ‘active’ and that of the controlling bit as ‘passive’.

A is controlled by B
B is controlled by A
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FIG. 1: Scheme for swapping the roles of the two species, with two triple wells, one for each species, in orthogonal T-configuration
that can be switched between the two configurations by using different trapping lasers to create the two triple wells.

B. Assumptions

In all that follows, without significant loss of generality we make the following assumptions:
1. We assume the potential transverse to all the triple wells to be sufficiently strong to keep both species ‘frozen’

in the ground state of their respective transverse potentials.
2. In any given cycle, the depth of the triple-well for the passive species can be made sufficiently deep to keep the

particle localized in the specific well it happens to be in (one of the two extreme wells, either the one overlapping
with the central well of the active direction or the one at the other extreme).

3. Due to the previous two assumptions, all our simulations will be in effective 1D along the ‘active’ direction with
co-ordinate “z”. For simplicity of notation we will refer to the controlled species as A and controlling species as B

4. We assume the transverse trapping potential to be cylindrically symmetric 2D harmonic trap and denote
directions transverse to the direction of the triple wells by “⊥”.
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II. OPTICAL LATTICE: SINGLE PARTICLE OF EACH SPECIES

In the case of optical lattices the triple wells are formed by a three harmonic component super-lattice, where the
third harmonic is generated by counter-propagating beams with wavelength λ and the first and second harmonics are
obtained by using the same light now intersecting at an angle as to increase the spatial periodicity of the interference
pattern along the triple-well direction. We assume a single particle of each species. Integrating out the transverse
wavefunction, we get an effective 1D 2-particle Hamiltonian for hard-core bosons, with ‘a’ being the inter-species
scattering length:

Ĥlong =
−h̄2

2mA

∂2

∂z2
A

+
−h̄2

2mB

∂2

∂z2
B

+ V (zA, zB) + 2ah̄ω⊥δ(z1 − z2) (1)

We choose our length unit to be l = λ for the active species A and the energy unit ε = ER = h2/(2mAλ2) the
corresponding recoil energy and time unit τ = h̄/ε and denote l⊥ =

√
h̄/(mAω⊥) the transverse oscillator length for

species A. Using a common transverse trapping frequency ω⊥ for both species, we reduce it to a dimensionless form:

Ĥlong =
−1

(2π)2
∂2

∂z2
A

+
−1

(2π)2
mA

mB

∂2

∂z2
B

+ V (zA, zB) +
a

π2l2⊥A

δ(z1 − z2). (2)

Note: We present two lattice designs which differ only in the potential experienced by species B. So the evolution
of species A is the same for both. Only the evolution of species B is a bit different with little effect on species A.

A. Lattice design 1: Swappable

This design is suitable for direct implementation of the swappable configuration shown in Fig. 1 assuming two
distinct species 87Rb and 23Na with respective trapping wavelength λNa = 600 nm and λRb = 800 nm along the
active directions for each. With 23Na, D1, D2 ' 589 nm lines and 87Rb D1 = 795nm, D2 = 780nm so this ensures
each species is red-detuned by about 10 nm from its trapping frequency, but far off-resonant from that of the other.

Parameters: We present the relevant parameters in Tables I and II for 87Rb and 23Na as the active species
respectively (the units ε and l are therefore different). We consider two different transverse lattice depths of V⊥ = 60ε
and V⊥ = 80ε accessible in current experiments. The interspecies scattering length of 23Na and 87Rb is 103 aB [1].
Along the direction of the triple-wells, the well depths never exceed Vz = 20ε.

We use ω⊥ = (2π/λ)
√

2V⊥/mA for the effective harmonic oscillator angular frequency of the transverse potential,
and note that in our units l⊥ and the transverse confinement energy 2h̄ω⊥ depend only the depth of the potential.

TABLE I: 87Rb as active species l = λ = 800nm

parameter V = 80ε V = 60ε

Energy unit ε = ER 2.36× 10−30 J

Time unit τ = h̄/ε 4.47× 10−5 s

Transverse trap freq. ω⊥ 4.0× 105 Hz 3.5× 105 Hz

Int. strength g1D 0.244 ε · l 0.211 ε · l
Transverse Osc. Length l⊥ 0.053 l 0.057 l

Transverse energy 2h̄ω⊥ 36 ε 31 ε

Int. energy g1D/lz 3.24 ε 2.8 ε

TABLE II: 23Na as active species l = λ = 600nm

parameter V = 80ε V = 60ε

ε = ER 1.6× 10−30 J

τ = h̄/ε 6.7× 10−6 s

ω⊥ 2.7× 106 Hz 2.33× 106 Hz

g1D 0.325 ε · l 0.281 ε · l
l⊥ 0.053l 0.057l

2h̄ω⊥ 36 ε 31 ε

g1D/lz 4.3 ε 3.74 ε

Salient Points: We summarize the primary implications of these estimates:
1. Our use of g1D = 0.26 ε · l in the paper is justified by realistic parameters.
2. Time scale for operation is about 11.86 τ which translates to 0.53× 10−3s for active 23Rb and 0.079× 10−3s for

active 23Na, implying sub-millisecond operation time scales, comparable to or better than most proposed schemes for
quantum gate.

3. Effective 1D dynamics or species A is justified: The transverse energy ∼ 30ε is much higher than the sum of
the longitudinal kinetic energy ∼ ε and interaction energy g1D/lz ' 4ε. The latter is estimated by the product of the
interaction strength and 1D particle density ∼ N/L ' 1/lz with N ∼ 1 since we consider single particle of each species;
the extent of the density overlap of the particles during evolution is estimated by the effective longitudinal oscillator
length lz =

√
h̄/(mAωz) where ωz = (2π/λ)

√
2Vz/mA we take Vz = 20ε as the upper limit of the longitudinal depth

of the wells as seen in Fig. 4.
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B. Lattice design 2: Not Swappable

We also present an alternate design which will not allow swapping but can be easier to implement in an experiment
since it requires fewer trapping beams and can be implemented with a single atomic species. We take two spin states
of 87Rb |F = 1,mF = 1〉 state for species A and |F = 2,mF = 2〉 state for species B. We will choose the second
harmonic to be the σ(−) polarized light at the ‘magic’ wavelength 785 nm [2], at which it is invisible to species B in
state |F = 2,mF = 2〉 due to the cancelation of the D1 and D2 line polarizabilities which have equal strength but
opposite signs. On the other hand, 785 nm is red-detuned for species A |F = 1,mF = 1〉 which therefore sees an
attractive potential.

Then we take the first and the third harmonics to be far detuned from both species such that they have the same
strength for both. As shown in Fig. 2 the absence of the second harmonics results in a much deeper central well for
species B. Even when the lattice depth is varied as part of our dynamic mechanism, species B remains well-localized
in the center, provided it was prepared in a local ground state of that well. We find in our simulations (shown in
Figs. 3 and 4) that the dynamics can be made almost the same as in the model presented in the paper.

Parameters: The scaled Hamiltonian is given by Eq. (2) with mA = mB . Taking the transverse lattice depths of
80ER and using the triplet scattering length of 87Rb, a = 99aB , we get values for the parameters ω⊥ = 9.4× 105Hz,
l⊥ = 5.3λ and g1D = 0.36ER · λ which are similar to those for the lattice design 1.

1st 
2nd 3rd

Species A 

(1st+2nd+3rd)

Species B 

(1st + 3rd)

Harmonics

FIG. 2: Species Selective Potentials for Lattice Design 2: Schematic is shown for (a) Three harmonics, corresponding
to lattice periodicities 3λ/2, 3λ/4, λ/2 , the 1st, 2nd and 3rd harmonics respectively; (b) Potential seen by species A with all
three contributing, (c) potential seen by species B, with only 1st and 3rd harmonic contributing. [Here equal amplitudes are
assumed for all harmonics to illustrate the scheme, but in practice the amplitudes will vary].
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FIG. 3: Equivalent of Fig. 3 in the resubmitted
manuscript (Fig. 4 in the first submitted version) but
here it is for a lattice potential. Comparison confirms the
behavior is essentially the same. The primary difference is
that in plot (d) here we plot the amplitudes A2(t), A3(t) of
the time variations of the second and the third harmonics in-
stead of the barrier heights and separation for the triple-well
presented in the paper. Also the units are different.
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FIG. 4: Equivalent of Fig. 4 in the resub-
mitted manuscript (Fig. 5 in the first sub-
mitted version), but here it is for a lattice
potential. Comparison confirms that the be-
havior is essentially the same. The primary dif-
ference is that due to our assumption of lattice
design 2, the species B has a somewhat broader
density distribution, but remains well localized
as we require.
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III. TRIPLE WELL: USING BEC OF EACH SPECIES

Main Design goals: Our design incorporates the following essential features:
(i) Species A has none or negligible self-interaction so that its eigenstates can be defined by the linear Schrödinger

equation.
(ii) Interspecies interaction between species A and B is in the range necessary for our mechanism, not too strong

and not too weak.
(iii) The confining potential is species selective.
(iv) Both species have sufficient number of atoms (≥ 1000) to allow use of mean field theory (this is not essential,

but mainly assumed to conduct our numerical estimates here).
(v) Both species are trapped in such a way that the dynamics is effectively one-dimensional.
(vi) Spatial extent of species B along the direction of transport remains well localized within acceptable limits as

defined in our mechanism.

Swappability: In order to implement swappability as described earlier, we need to take into account that the
active species has to be non-interacting, which can be done with Feshbach resonance. Since the magnetic field can be
tuned to make only one species non-interacting (baring some extraordinary coincidence), the magnetic field will have
to be tuned to the Feshbach resonances for whichever species is active, when the roles of the species are switched.
When one wishes to cancel the self interaction of a species with narrow Feshbach resonances such as Rb, this becomes
an experimentally non-trivial requirement, however in principle it can be done, particularly considering the variety
for species-pairs that are being currently trapped. In what follows we will fix one species as active and the other as
passive to demonstrate feasibility.

Design: For species A we pick 7Li and species B to be 87Rb, both bosonic and assumed to be in degeneracy. To
allow magnetic tuning to Feshbach resonance, we assume an optical dipole trap. Experiments [3] have shown that
7Li in |F = 1,mF = 1〉 state has a very weak scattering length a = −1 ∗ aB at 560G and changes sign and goes
up to a = 10aB at 630G. This implies that it has zero scattering length at about 566G (by linear interpolation).
On the other hand the theoretical studies have computed inter-species s-wave scattering length [4] between 7Li in
|F = 1,mF = 1〉 and 87Rb in |F = 1,mF = 1〉 is zero at 438G and positive above that until it hits resonance at
566 G (coincidentally!). That coincidence in field strength means that we cannot be exactly at 566 G necessary for
a = 0 for Lithium, but we find that we can tune the interspecies scattering to around a = +100 aB at 560 G by being
close but not quite at the resonance while having the species A scattering length of the order of a = −1 aB , which
is low enough that it has negligible effect on the dynamics or eigenstates of species A. Notably, the magnitude of the
interaction can be further decreased but at the cost of increasing the interspecies interaction. We introduce two novel
design features:

1. Both species are confined by the same optical dipole trap in longitudinal direction (direction of dynamics).
However, the two Gaussian barriers that create the triple well structure are only felt by species A, which can be
achieved by keeping the frequencies of the lasers that create them far off-resonant with respect to the species B, 87Rb.
As we will show, species B is sufficiently well localized even without the two barriers and there is the advantage that
variation of the barriers do not affect species B at all.

2. We allow for a small relative transverse offset of the longitudinal axes of the two species, which allows adjusting
the degree of overlap of the two species, providing an additional parameter to control the inter-species interaction.

Parameters: We consider a geometry in which the Rb and Li are confined in a cigar-shaped optical dipole trap by
the same longitudinal laser that we choose to be of 1064 nm wavelength. The two species will still experience different
axial trap frequencies due to different detuning and masses. The tight transverse confinement implies a Gaussian
shape transverse profile for both species (i =A,B labels the species): Φi(ri, zi) =

√
2βie

−βir
2/2ψi(zi). Integrating out

the transverse direction we get the dimensionless coupled effective 1D Gross-Pitaevskii equations:

1
2

[
− ∂2

∂z2
A

+ z2
A

]
ψA +

aABNBβB

µAB
|ψB |2ψA = i∂tψA

1
2µB

[
− ∂2

∂z2
B

+ µ2
Bη2

zz2
B

]
ψB +

aABβANA

µAB
|ψA|2ψB +

2aBBNBβB

µB
|ψB |2ψB = i∂tψB (3)

As described above, the self-interaction of species A is set to be zero. Here we have taken the axial frequency ωA
z of
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species A to define our units: energy → ε = h̄ωA
z ; length → l =

√
h̄

mAωA
z

; time → τ = (ωA
z )−1, and have defined:

ωB
⊥

ωA
⊥

= η⊥;
ωB

z

ωA
z

= ηz;
mAB

mA
= µAB ;

mB

mA
= µB ; lB⊥ =

1√
µBη⊥

lA⊥, (4)

where mAB is the reduced mass of species A and B, and l
A(B)
⊥(z) are the respective harmonic oscillator lengths, aij the

s-wave scattering lengths, Ni the number of atoms.
We take the trap frequencies for Rb to be ωB

z = 2π× 10 Hz and ωB
⊥ = 2π× 100 Hz and take the Li transverse trap

frequency to be ωA
⊥ = 2π × 1000 Hz, while its longitudinal frequency is fixed by ωB

z since the same laser wavelength
is used. We take the number of atoms for both species to be NA = NB = 1000, large enough to justify the mean field
theory used here [5], but not so large as to create phase fragmentation in elongated traps. Then using the ratio of
detuning for the two species δA

δB = 1.6 in the longitudinal optical trapping field, we have:

η⊥ =
ωB
⊥

ωA
⊥

=
1
10

ηz =
ωB

z

ωA
z

=

√
δA
z

δB
z

mA
z

mB
z

=
1

2.78
lBz
lAz

=

√
mA

z ωA
z

mB
z ωB

z

=
1

2.11
lB⊥
lA⊥

=

√
mA
⊥ωA

⊥
mB
⊥ωB

⊥
=

1
1.12

. (5)

As will be justified shortly, the interspecies coupling term in the species B equation is small relative to its self-
interaction, so it does not have any significant influence in determining the properties of species B. By neglecting it we
have a simple GP equation for Rb. Following Ref. [5], we assume a Thomas-Fermi profile in the z-direction, justified
because of weak trapping along it: ψ(zB) =

√
3/(4d3

B)
√

d2
B − z2

B , where zB ∈ [−dB , dB ]. We determine the values of
the relevant parameters by minimizing with respect to parameters βB and dB the resulting Gross-Pitaevskii energy
functional corresponding to the Rb equation above without the cross-interaction term

E[ΦB ]
N

= ηz

[
1

2µBηz

(
βB +

(µBηzγB)2

βB

)
+ µBηz

d2
B

10
+

1
µBηz

3NBaBBβB

5dB

]
. (6)

TABLE III: Units

Physical unit value

Energy unit ε = h̄ωA
z 1.8× 10−32 J

Length unit
√

h̄
mAωA

z
7.2× 10−6 m

Time unit (ωA
z )−1 5.7× 10−3s

TABLE IV: Summary of parameter for two-species BEC in triple-well

parameter dimensionless value

Transverse size of B is lB⊥ =
√

1/βB βB = 35.85 ' 36 ⇒ lB⊥ = 0.17 l

Transverse size of A is lA⊥ =
√

1/βA βA = 35.97 ' 36 ⇒ lA⊥ = 0.17 l

Longitudinal size of B is dB = 1.58 l

Longitudinal size of A is lAz = 1 l (by choice of units)

chemical-potential of B 5.7 ε less than 2h̄ωB
⊥ = 7.2 ε)

Self-interaction strength of B 2aBBNBβB
µB

= 4.2 ε · l
Cross-interaction strength for A aABNBβB

µAB
= 28.6 ' 29ε · l

Cross-interaction strength for B aABNAβA
µAB

= 28.7 ' 29ε · l

FIG. 5: Plot of the two offset Gaussian for
the parameters d = 0.304, β = 36

We summarize the results in Table IV. The cross-interaction turns out
to be much higher than the self-interaction for species B, contrary to our
assumption. Likewise the cross-interaction for species A is two orders of
magnitude higher than is assumed in our simulations. We rectify this by
creating a slight transverse offset of the longitudinal axes to reduce the
overlap of the two species. Since the radial profiles are identical for the
two, we can get the geometric factor by integrating:

∫∞
−∞ dye−βy2 ×

[∫ d/2

−∞ dxe−β(x−d)2 +
∫∞

d/2
dxe−βx2

]
= π

β Erfc[d
√

β/2] (7)

which is an Error-Function and where we find the line of intersection of
the surfaces by setting x2 = (x − d)2 ⇒ 2x = d for positive offset d. So
we numerically solve (for β = 36):

29× π

β
Erfc[d

√
β/2] = 0.5 d = 0.304l (8)
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The radial densities are shown in Fig. 5 and as can be seen even a small
offset leads to a significant reduction of the interspecies interaction.

Salient points: We summarize the primary implications of these estimates:

1. Our use of g1D = 0.5 ε · l assumed in the paper can be realized with BEC’s by offsetting their axes.

2. The spatial extent of species B is 2dB ' 3l which is more localized than the size we assume for the central well
in the paper, 2d ' 4l, measured as the separation between the peaks of the barriers.

3. The dynamics along the active direction is effectively 1D since the chemical potential of even species B (which
has interaction) is 5.69ε which is less than the energy required for exciting the 1st transverse excited state 7.2ε.

IV. ESTIMATE OF GATE ROBUSTNESS

We describe the roubustness of our proposal in the context of the quantum gate operation since that is less tolerant
than the transistor. We consider the two primary sources of fluctuations and errors in the outcome: (i) Coupling to
states outside the three-state manifold assumed (ii) fluctuations of the physical parameters.

Coupling to Higher energy states: In our simulations we have found 98% fidelity for the triple well case and
lattice design 1, and 96% fidelity with the lattice design 2 described earlier, in both the dynamic and the static case.
The infidelity is primarily due the effects of the higher lying states. In the static case the fidelity would have been
100%, if we had chosen the initial state be a strict superposition of the lowest three eigenstates since the Hamiltonian
does not evolve. But we used a Gaussian initial state to show that a well-localized state can be projected almost
entirely onto the lowest three states.

The primary advantage of the dynamic case is that it allows us isolating the initial and final state for initiation
and readout. The trade-off is the coupling to higher lying states introduced by the time-dependent potential. But
the energy difference between the highest of the three state manifold with the next higher state is about 10 times the
energy separations within the manifold. This allows the evolution to be non-adiabatic with respect to the manifold
energies, while maintaining adiabacity with respect to the coupling to higher lying states. This allowed us to match
the fidelity of the static case, and by a choice of just 20% stronger interaction obtain a time scale identical to that
resulting from the natural phase evolution of the eigenstates in the static potential.

Fluctuations of the physical parameters: In optical traps, such as we consider, there can be (i) high frequency
noise (>kHz) related to the lasing system and controlling electronics, and (ii) low frequency noise ≤ 100 Hz due to
vibration of optical elements or static errors due to imprecise calibration of laser powers. The high frequency noise
typically leads to heating. In the case of the lattice implementation, the operation times are 0.1− 0.5 ms, and single
atoms can be trapped in lattices ∼ 10 s [6]. Therefore the loss of fidelity due to such noise ∼ 10−4. For implementation
with BEC, for our choice of parameters the operation times are 44τ = 0.25 s, which is slow compared to the lattice,
and heating effects can be significant. But BEC of various species have been created with lifetimes [7, 8] ranging
10− 100 s, and moreover our operation can speeded up by using tighter traps, whereby such effects could be reduced
to < 1%. Since BEC of 106 atoms [9] has been shown in experiments to have a lifetime 18 s, therefore with much
lesser atoms 103 as we assume, the lifetimes can be much longer and therefore loss due to heating proportionately
smaller. For gate operation, the lattice implementation is still clearly the preferred choice as regards operation speed.

In a lattice, due to short operation time scales low frequency noise can be treated as static deviations in the
parameters from the optimal values. Effect of such noise can be best understood if we view the gate operation as an
interference effect of the dynamical phase of the three states. At time T, at the end of each cycle, the states 1 and 3
are in phase, so they act like one ‘arm’ of a Mach-Zehnder interferometer and the state 2, the other ‘arm’. The relative
phase between the two ∆θ = (∆E2−∆E1)T/h̄ determines the amplitude of the ‘outcome’ state corresponding to our
qubit definition. Therefore the probability and hence the infidelity depends f̄ ∝ sin2(∆θ), and for small deviations,
the consequent infidelity is f̄ ∝ (∆θ)2. The quadratic dependence makes our scheme robust against small amplitude
low frequency noises.

We model the effects of the low frequency noise by (i) multiplying specific parameters by (1 ± ε), with ε a small
deviation (ii) numerically evolving the cycles with resulting altered amplitudes (iii) compute the second derivative of
fidelity by finite-difference. The increase in infidelity is then given by (with i labeling different physical parameters):

∆f̄ =
1
2

∑

i=1

∣∣∣∣
∂2f̄

∂ε2i

∣∣∣∣ ε2i (9)
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In typical experiments involving optical traps, it is well known that the phase of the lasers can be made quite stable,
so the defining sources of noise are the fluctuations of amplitude of the lasers used. We evaluate six second derivatives,
for each of the three harmonics we need to monitor 2 fidelities: one with and one without species B, they are shown in
the table below, provided the amplitudes can be stabilized to εi ∼ 0.001, the absolute increase of infidelity according

derivative Species B absent Species B present
∂2f̄

∂ε21
181 126

∂2f̄

∂ε22
272 211

∂2f̄

∂ε23
42 27

to equation (9) is about 2.5 × 10−4, which is of the same order 10−4 as the heating induced infidelity, mentioned
above.

The dynamical phases that define our scheme also depend on the cycle time T and the interaction strength VAB .
The infidelity dependence is likewise quadratic with respect to the variations in both, given approximately by:

∆f̄ '
( π

2T

)2

(δT )2 ∆f̄ ' π2(δVAB)2. (10)

In the case of the interaction, we used the approximately sinusoidal shape of the Fig. 3(a) in the revised manuscript.
Even deviations as high as 5% in the time period T leads to only 0.6% deviation in the fidelity, indicating the
robustness of the scheme with respect to such fluctuations. The fluctuations in the interaction can be due to that of
(i) transverse confining field, which being optical, can contribute similar amplitude noise as above, but with a smaller
coefficient, and therefore less than 10−4, and (ii) influenced by magnetic field used for tuning the Feshbach resonances,
since the fields can be stable < 10−3 [4]this leads to comparable or smaller effects as the other sources of noise.

[1] M. Bhattacharya et al., Eur. Phys. J. D 31, 301 (2004).
[2] O. Mandel et al., Phys. Rev. Lett. 91, 010407 (2003).
[3] K. E. Strecker et al., Nature 417, 150 (2002).
[4] C. Marzok et al., Phys. Rev. A 79, 012717 (2009).
[5] Kunal K. Das, Phys. Rev. A 73, 053612 (2002).
[6] M. J. Gibbons et al., Phys. Rev. A 78, 043418 (2008).
[7] H. Imai et al., Phys. Rev. A 85, 013633 (2012).
[8] H.-J. Miesner et al., Phys. Rev. Lett. 82, 2228 (1999).
[9] A. P. Chikkatur et al., Science 296, 2193 (2002).


