Math 021, Dr. McLoughlin, Handout 3 Page 1 of 2

HANDOUT 3

THE AXIOMS OF THE REALS

MATH 021 FUNDAMENTALS OF MATHEMATICS

M. P. M. M. MCLOUGHLIN

Some basics on the real line (\(\mathbb{R} \)):

There is *no* centre (e.g.: the nonsense about \(\infty + (-\infty) = 0 \) one may have learnt in high school is a fallacy) so one can reasonably represent the line as:

-4 -3 -2 -1 0 1 2 3 4 or

-10 -9 -8 -7 -6 -5 -4 -3 -2 or

\(e \pi 10 \sqrt{111} 20 40 60 1,000 10^{20} \)

The reals (as all of math) begins with axioms:

The Field Axioms of \(\mathbb{R} \)

Axiom 1 (closure of addition): \(\forall x, y \in \mathbb{R}, x + y \in \mathbb{R} \) and \((x = w \land y = v) \Rightarrow (x + y = w + v) \)

Axiom 2 (commutative of addition): \(\forall x, y \in \mathbb{R}, x + y = y + x. \)

Axiom 3 (associative of addition): \(\forall x, y, z \in \mathbb{R}, (x + y) + z = x + (y + z) \)

Axiom 4 (existence of identity of addition): \(\exists \) a unique number 0 \(\ni x + 0 = x \forall x \in \mathbb{R} \)

Axiom 5 (existence of additive inverse): \(\forall x \in \mathbb{R} \exists \) a unique number \(-x \ni x + (-x) = 0 \)

Axiom 6 (closure of multiplication): \(\forall x, y \in \mathbb{R}, x \cdot y \in \mathbb{R} \) and \((x = w \land y = v) \Rightarrow (x \cdot y = w \cdot v) \)

Axiom 7 (commutative of multiplication): \(\forall x, y \in \mathbb{R}, x \cdot y = y \cdot x. \)

Axiom 8 (associative of multiplication): \(\forall x, y, z \in \mathbb{R}, (x \cdot y) \cdot z = x \cdot (y \cdot z) \)

Axiom 9 (existence of identity of multiplication): \(\exists \) a unique number 1 \(\ni x \cdot 1 = x \forall x \in \mathbb{R} \)
Axiom 10 (existence of multiplicative inverse): \(\forall x \in \mathbb{R} \ 3 x \neq 0 \exists \text{ a unique number } x^{-1} \)
\[\exists x \cdot (x^{-1}) = 1 \]

Axiom 11 (distributive of multiplication over addition): \(\forall x, y, z \in \mathbb{R}, x \cdot (y + z) = (x \cdot y) + (x \cdot z) \)

The Order Axioms of \(\mathbb{R} \)

Axiom 12 (trichotomy): \(\forall x, y \in \mathbb{R}, \) exactly one of the following relationships exists between \(x \) and \(y \):
\[x < y, \ x = y, \ \vee \ x > y. \ \ [(x < y) \ \text{exor } (x = y) \ \text{exor } (x > y)] \]

Axiom 13 (transitive): \(\forall x, y, z \in \mathbb{R}, [(x < y) \ \land \ (y < z)] \Rightarrow (x < z) \)

Axiom 14 (preservation of order under addition): \(\forall x, y, z \in \mathbb{R}, (x < y) \Rightarrow (x + z < y + z) \)

Axiom 15 (preservation of order for positive multiplier): \(\forall x, y \in \mathbb{R}, [(x < y) \ \land \ (0 < z)] \Rightarrow (x \cdot z < y \cdot z) \)

The Completeness Axiom of \(\mathbb{R} \)

Axiom 16 (completeness): \(\forall A \subseteq \mathbb{R} \ 3 A \text{ is bounded above } \exists \text{ a number } m \text{ which is the supremum of the set } \)