

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Electronic Notes in **DISCRETE MATHEMATICS**

Electronic Notes in Discrete Mathematics 38 (2011) 825–828

www.elsevier.com/locate/endm

Diagonal forms for incidence matrices and zero-sum Ramsey theory

Richard M. Wilson ¹

Department of Mathematics California Institute of Technology Pasadena, USA

Tony W. H. Wong²

Department of Mathematics California Institute of Technology Pasadena, USA

Abstract

We consider integer matrices N_t whose rows are indexed by the t-subsets of an n-set and whose columns are all distinct images of a particular column under the symmetric group S_n . Examples include matrices in the association algebras of the Johnson schemes. Three related problems are addressed. What is the Smith normal [form \(or a diagonal for](http://dx.doi.org/10.1016/j.endm.2011.10.038)m) for N_t and the rank of N_t over a field of characteristic p? When does the equation N_t **x** = **b** have a solution **x** in integers? When is the vector of all ones in the row space of N_t over the field of characteristic p ? Previous work provides answers to these questions when the columns of N_t have at least t "isolated vertices", but interesting problems arise when this is not the case.

Keywords: Zero-sum Ramsey theory, diagonal forms.

1571-0653/\$ – see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.endm.2011.10.038

¹ Email: rmw@caltech.edu

² Email: tonywong@caltech.edu

1 Introduction

By a t-vector based on a set X, we mean a vector **h** whose coordinates are indexed by the t-subsets of the set X. If \bf{h} is a t-vector and T a t-subset of X, then let **h**(T) denote the entry of **h** in coordinate position T.

Let H be a given t-uniform hypergraph on a v-set X . The *characteristic* t-vector of H is defined as the t-vector **h** based on X such that $h(T) = 1$ when T is a hyperedge of H and 0 otherwise.

For an integer t-vector **h** based on a v-set X, we consider the matrix $N_t(\mathbf{h})$, or simply N_t , whose columns are all images of **h** under the symmetric group S_v . If **h** is the characteristic t-vector of H, then we may also denote the matrix by $N_t(H)$. If H is composed of a clique of size k and $v - k$ isolated vertices, then $N_t(H)$ is the incidence matrix of t-subsets against k-subsets of the v-set X, denoted by W_{tk}^v , or W_{tk} if the v-set is understood.

Let H have e edges. The zero-sum Ramsey theorem asserts that for any prime p dividing e, there exists a smallest integer $\operatorname{ZR}(H, p)$ such that for all $n \geq \text{ZR}(H,p)$, for any coloring of the t-subsets of an n-set S by $\{0,1,\ldots,p-1\}$, there exists an isomorphic copy of H in $\binom{S}{t}$ t_t) such that the sum of the colors on its edges is 0 in \mathbb{Z}_p . In other words, there exists a smallest integer $\operatorname{ZR}(H, p)$ such that after extending H by adding $\operatorname{ZR}(H,p) - v$ isolated vertices, every vector in the row module of $N_t(H)$ over \mathbb{Z}_p has at least one 0 entry.

2 Diagonal forms

If the rows of an integer matrix M are linearly independent over any field, we say M is row-unimodular. The term unimodular matrix is used for a square row-unimodular matrix. Every row-unimodular matrix M has unimodular extensions, i.e. unimodular matrices F whose row set includes the rows of M .

It is also convenient to consider Smith form and diagonal form of r by m matrix A as a square matrix of order r for any $m \geq r$. We say a square diagonal matrix D is a *diagonal form* for A when there is a unimodular matrix E of order r and an r by m row-unimodular matrix U so that

The *Smith normal form* of an integer matrix \vec{A} is the unique diagonal form so that the diagonal entries d_1, d_2, \ldots, d_r are nonnegative and d_i divides d_{i+1} for $i = 1, 2, \ldots, r - 1.$

The diagonal forms of a given matrix A is important in studying the row

R.M. Wilson, T.W.H. Wong / Electronic Notes in Discrete Mathematics 38 (2011) 825–828 827

module over \mathbb{Z} . In fact, we have the property that

$$
\mathbb{Z}^m/\mathrm{row}_{\mathbb{Z}}(A)\cong \mathbb{Z}_{d_1}\oplus \mathbb{Z}_{d_2}\oplus \cdots \oplus \mathbb{Z}_{d_r}\oplus \mathbb{Z}^{m-r}.
$$

Here, $\mathbb{Z}_0 = \mathbb{Z}$ and $\mathbb{Z}_1 = \{0\}$. Hence, by computing the diagonal form of A, we can investigate the row module over \mathbb{Z} or row space over \mathbb{Z}_p .

3 Primitive and non-primitive graphs

A t-vector **h** is *primitive* when the GCD of $\langle \mathbf{f}, \mathbf{h} \rangle$ over all integer t-vectors **f** in the null space of $W_{t-1,t}$ is equal to 1. A t-uniform hypergraph is said to be primitive when its characteristic t-vector **h** is primitive. This concept of primitivity of hypergraphs appears implicitly in earlier work, e.g. [5].

Theorem 3.1 A simple graph G with at least four vertices is primitive unless G is isomorphic to a complete graph, an edgeless graph, a complete bipartite graph, or a disjoint union of two complete graphs.

Theorem 3.2 Let G be a simple primitive graph with n vertices, m edges and degrees δ_1,\ldots,δ_n . Let $h = \gcd(\delta_1,\ldots,\delta_n,m)$. Let g denote the gcd of all differences $\delta_i - \delta_j$. Then a diagonal form of $N_2(G)$ is

$$
(1)^{\binom{n}{2}-n}
$$
, $(h)^1$, $(g)^{n-2}$, $(mg/h)^1$.

Theorem 3.3 Let G be a simple non-primitive graph with at least four vertices. Then diagonal forms of G can be given by the following.

	G	a diagonal form of $N_2(G)$
(a)	K_n	$(1)^1, (0)^{\binom{n}{2}-1}$
(b)	edgeless	$(0)^{\binom{n}{2}}$
(c)	$K_{1,n-1}$	$(2)^1$, $(1)^{n-1}$, $(0)^{\binom{n}{2}-n}$
(d)	$K_{r,n-r}$	$\left(\frac{mg}{h}\right)^1$, $(h)^1$, $(2g)^{n-2}$, $(2)^{\binom{n}{2}-(2n-2)}$, $(1)^{n-2}$
	$2 \leq r \leq \frac{n}{2}$	$m = r(n - r), g = n - 2r, h = \gcd(r, n)$
(e)	$K_1 \sqcup K_{n-1}$	$(n-2)^1$, $(1)^{n-1}$, $(0)^{\binom{n}{2}-n}$
(f)	$K_r \sqcup K_{n-r}$ $2 \leq r \leq \frac{n}{2}$	<i>n odd:</i> $\left(\frac{2mg}{h}\right)^1$, $(h)^1$, $(2g)^{n-2}$, $(2)^{\binom{n}{2}-(2n-1)}$, $(1)^{n-1}$
		<i>n</i> even: $\left(\frac{mg}{h}\right)^1$, $(2h)^1$, $(2g)^{n-2}$, $(2)^{\binom{n}{2}-(2n-1)}$, $(1)^{n-1}$
		$m = {r \choose 2} + {n-r \choose 2}, g = n - 2r, h = \gcd(r-1, g, m)$

828 *R.M. Wilson, T.W.H. Wong / Electronic Notes in Discrete Mathematics 38 (2011) 825–828*

4 Relations with zero-sum Ramsey theory

Theorem 4.1 Given a simple graph G with at least four vertices and a prime p such that p|m, the vector of all ones **j** is in the row space of $N_2(G)$ over \mathbb{Z}_p if and only if either of the following holds:

(i) G is primitive with $p|g$ but $p \nmid h$, (ii) $G = K_n$, (*iii*) $G = K_{1,n-1}$ with $p > 2$, (iv) $G = K_1 \sqcup K_{n-1}$ with $p \nmid n-2$ or $p = 2$, (v) $G = K_r \sqcup K_{n-r}, 2 \le r \le \frac{n}{2}$, with $(p|g \text{ but } p \nmid h)$ or $p = 2$.

In particular, when $p = 2$, we have $\operatorname{ZR}(G, 2) = n$ unless G has all degrees odd, $G = K_n$ or $G = K_r \sqcup K_{n-r}$ for some $1 \leq r \leq \frac{n}{2}$, which agrees with the results in [1].

References

- [1] Y. Caro, A complete characterization of the zero-sum (mod 2) Ramsey Numbers, *J. Combinat. Thy. Ser. A* **68** (1994), 205–211.
- [2] R. L. Graham, S.-Y. R. Li, and W.-C. W. Li, On the structure of t-designs, *SIAM J. Alg. Disc. Meth.* **1** (1980), 8–14.
- [3] J. E. Graver and W. B. Jurkat, The module structure of integral designs, *J. Combinatorial Theory* **15** (1973), 75–90.
- [4] G. B. Khosrovshahi and Ch. Maysoori, On the bases for trades, Linear Algebra and its Appl., **226–228** (1995), 731–748.
- [5] Richard M. Wilson, Signed hypergraph designs and diagonal forms for some incidence matrices. Des. Codes Cryptogr. **17** (1999) 289–297.