

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 38 (2011) 825-828

www.elsevier.com/locate/endm

Diagonal forms for incidence matrices and zero-sum Ramsey theory

Richard M. Wilson¹

Department of Mathematics California Institute of Technology Pasadena, USA

Tony W. H. Wong²

Department of Mathematics California Institute of Technology Pasadena, USA

Abstract

We consider integer matrices N_t whose rows are indexed by the *t*-subsets of an *n*-set and whose columns are all distinct images of a particular column under the symmetric group S_n . Examples include matrices in the association algebras of the Johnson schemes. Three related problems are addressed. What is the Smith normal form (or a diagonal form) for N_t and the rank of N_t over a field of characteristic p? When does the equation $N_t \mathbf{x} = \mathbf{b}$ have a solution \mathbf{x} in integers? When is the vector of all ones in the row space of N_t over the field of characteristic p? Previous work provides answers to these questions when the columns of N_t have at least t "isolated vertices", but interesting problems arise when this is not the case.

Keywords: Zero-sum Ramsey theory, diagonal forms.

 $1571\mathchar`left 1571\mathchar`left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathchar'left 1571\mathch$

¹ Email: rmw@caltech.edu

² Email: tonywong@caltech.edu

1 Introduction

By a *t-vector* based on a set X, we mean a vector \mathbf{h} whose coordinates are indexed by the *t*-subsets of the set X. If \mathbf{h} is a *t*-vector and T a *t*-subset of X, then let $\mathbf{h}(T)$ denote the entry of \mathbf{h} in coordinate position T.

Let *H* be a given *t*-uniform hypergraph on a *v*-set *X*. The *characteristic t*-vector of *H* is defined as the *t*-vector **h** based on *X* such that $\mathbf{h}(T) = 1$ when *T* is a hyperedge of *H* and 0 otherwise.

For an integer t-vector **h** based on a v-set X, we consider the matrix $N_t(\mathbf{h})$, or simply N_t , whose columns are all images of **h** under the symmetric group S_v . If **h** is the characteristic t-vector of H, then we may also denote the matrix by $N_t(H)$. If H is composed of a clique of size k and v - k isolated vertices, then $N_t(H)$ is the incidence matrix of t-subsets against k-subsets of the v-set X, denoted by W_{tk}^v , or W_{tk} if the v-set is understood.

Let H have e edges. The zero-sum Ramsey theorem asserts that for any prime p dividing e, there exists a smallest integer $\operatorname{ZR}(H, p)$ such that for all $n \geq \operatorname{ZR}(H, p)$, for any coloring of the t-subsets of an n-set S by $\{0, 1, \ldots, p-1\}$, there exists an isomorphic copy of H in $\binom{S}{t}$ such that the sum of the colors on its edges is 0 in \mathbb{Z}_p . In other words, there exists a smallest integer $\operatorname{ZR}(H, p)$ such that after extending H by adding $\operatorname{ZR}(H, p) - v$ isolated vertices, every vector in the row module of $N_t(H)$ over \mathbb{Z}_p has at least one 0 entry.

2 Diagonal forms

If the rows of an integer matrix M are linearly independent over any field, we say M is row-unimodular. The term unimodular matrix is used for a square row-unimodular matrix. Every row-unimodular matrix M has unimodular extensions, i.e. unimodular matrices F whose row set includes the rows of M.

It is also convenient to consider Smith form and diagonal form of r by m matrix A as a square matrix of order r for any $m \ge r$. We say a square diagonal matrix D is a *diagonal form* for A when there is a unimodular matrix E of order r and an r by m row-unimodular matrix U so that

The Smith normal form of an integer matrix A is the unique diagonal form so that the diagonal entries d_1, d_2, \ldots, d_r are nonnegative and d_i divides d_{i+1} for $i = 1, 2, \ldots, r-1$.

The diagonal forms of a given matrix A is important in studying the row

module over \mathbb{Z} . In fact, we have the property that

$$\mathbb{Z}^m/\operatorname{row}_{\mathbb{Z}}(A) \cong \mathbb{Z}_{d_1} \oplus \mathbb{Z}_{d_2} \oplus \cdots \oplus \mathbb{Z}_{d_r} \oplus \mathbb{Z}^{m-r}.$$

Here, $\mathbb{Z}_0 = \mathbb{Z}$ and $\mathbb{Z}_1 = \{0\}$. Hence, by computing the diagonal form of A, we can investigate the row module over \mathbb{Z} or row space over \mathbb{Z}_p .

3 Primitive and non-primitive graphs

A *t*-vector **h** is *primitive* when the GCD of $\langle \mathbf{f}, \mathbf{h} \rangle$ over all integer *t*-vectors **f** in the null space of $W_{t-1,t}$ is equal to 1. A *t*-uniform hypergraph is said to be *primitive* when its characteristic *t*-vector **h** is primitive. This concept of primitivity of hypergraphs appears implicitly in earlier work, e.g. [5].

Theorem 3.1 A simple graph G with at least four vertices is primitive unless G is isomorphic to a complete graph, an edgeless graph, a complete bipartite graph, or a disjoint union of two complete graphs.

Theorem 3.2 Let G be a simple primitive graph with n vertices, m edges and degrees $\delta_1, \ldots, \delta_n$. Let $h = \text{gcd}(\delta_1, \ldots, \delta_n, m)$. Let g denote the gcd of all differences $\delta_i - \delta_j$. Then a diagonal form of $N_2(G)$ is

$$(1)^{\binom{n}{2}-n}, \quad (h)^1, \quad (g)^{n-2}, \quad (mg/h)^1.$$

Theorem 3.3 Let G be a simple non-primitive graph with at least four vertices. Then diagonal forms of G can be given by the following.

	G	a diagonal form of $N_2(G)$
(<i>a</i>)	K_n	$(1)^1, (0)^{\binom{n}{2}-1}$
(b)	edgeless	$(0)^{\binom{n}{2}}$
(c)	$K_{1,n-1}$	$(2)^1, (1)^{n-1}, (0)^{\binom{n}{2}-n}$
(d)	$K_{r,n-r}$	$\left(\frac{mg}{h}\right)^1$, $(h)^1$, $(2g)^{n-2}$, $(2)^{\binom{n}{2}-(2n-2)}$, $(1)^{n-2}$
	$2 \le r \le \frac{n}{2}$	$m = r(n - r), \ g = n - 2r, \ h = \gcd(r, n)$
(e)	$K_1 \sqcup K_{n-1}$	$(n-2)^1, (1)^{n-1}, (0)^{\binom{n}{2}-n}$
(f)	$K_r \sqcup K_{n-r}$ $2 \le r \le \frac{n}{2}$	$n \ odd: \left(\frac{2mg}{h}\right)^1, \ (h)^1, \ (2g)^{n-2}, \ (2)^{\binom{n}{2}-(2n-1)}, \ (1)^{n-1}$
		<i>n</i> even: $\left(\frac{mg}{h}\right)^1$, $(2h)^1$, $(2g)^{n-2}$, $(2)^{\binom{n}{2}-(2n-1)}$, $(1)^{n-1}$
		$m = \binom{r}{2} + \binom{n-r}{2}, \ g = n - 2r, \ h = \gcd(r - 1, g, m)$

4 Relations with zero-sum Ramsey theory

Theorem 4.1 Given a simple graph G with at least four vertices and a prime p such that p|m, the vector of all ones \mathbf{j} is in the row space of $N_2(G)$ over \mathbb{Z}_p if and only if either of the following holds: (i) G is primitive with p|g but $p \nmid h$, (ii) $G = K_n$, (iii) $G = K_{1,n-1}$ with p > 2, (iv) $G = K_1 \sqcup K_{n-1}$ with $p \nmid n - 2$ or p = 2, (v) $G = K_r \sqcup K_{n-r}$, $2 \leq r \leq \frac{n}{2}$, with $(p|g \text{ but } p \nmid h)$ or p = 2.

In particular, when p = 2, we have $\operatorname{ZR}(G, 2) = n$ unless G has all degrees odd, $G = K_n$ or $G = K_r \sqcup K_{n-r}$ for some $1 \leq r \leq \frac{n}{2}$, which agrees with the results in [1].

References

- Y. Caro, A complete characterization of the zero-sum (mod 2) Ramsey Numbers, J. Combinat. Thy. Ser. A 68 (1994), 205–211.
- [2] R. L. Graham, S.-Y. R. Li, and W.-C. W. Li, On the structure of *t*-designs, *SIAM J. Alg. Disc. Meth.* **1** (1980), 8–14.
- [3] J. E. Graver and W. B. Jurkat, The module structure of integral designs, J. Combinatorial Theory 15 (1973), 75–90.
- [4] G. B. Khosrovshahi and Ch. Maysoori, On the bases for trades, Linear Algebra and its Appl., 226–228 (1995), 731–748.
- [5] Richard M. Wilson, Signed hypergraph designs and diagonal forms for some incidence matrices. Des. Codes Cryptogr. 17 (1999) 289–297.