Module #8 – Number Theory

University of Florida
Dept. of Computer & Information Science & Engineering

COT 3100
Applications of Discrete Structures
Dr. Michael P. Frank

Slides for a Course Based on the Text
Discrete Mathematics & Its Applications
(5th Edition)
by Kenneth H. Rosen
Module #8 – Number Theory

Module #8:
Basic Number Theory

Rosen 5th ed., §§2.4-2.6
~31 slides, ~2 lectures
§2.4: The Integers and Division

• Of course you already know what the integers are, and what division is…

• **But:** There are some specific notations, terminology, and theorems associated with these concepts which you may not know.

• These form the basics of *number theory*.
 – Vital in many important algorithms today (hash functions, cryptography, digital signatures).
Divides, Factor, Multiple

- Let $a, b \in \mathbb{Z}$ with $a \neq 0$.
- $a | b \equiv \text{"a divides b"} \equiv \exists c \in \mathbb{Z}: b = ac$
 "There is an integer c such that c times a equals $b."$
 - Example: $3 | -12 \iff \text{True}$, but $3 | 7 \iff \text{False}$.
- Iff a divides b, then we say a is a factor or a divisor of b, and b is a multiple of a.
- "b is even" $\equiv 2 | b$. Is 0 even? Is -4?
Facts re: the Divides Relation

• $\forall a, b, c \in \mathbb{Z}$:
 1. $a | 0$
 2. $(a | b \land a | c) \rightarrow a | (b + c)$
 3. $a | b \rightarrow a | bc$
 4. $(a | b \land b | c) \rightarrow a | c$

• **Proof** of (2): $a | b$ means there is an s such that $b = as$, and $a | c$ means that there is a t such that $c = at$, so $b + c = as + at = a(s + t)$, so $a | (b + c)$ also. ■
Show \(\forall a,b,c \in \mathbb{Z}: (a \mid b \land a \mid c) \rightarrow a \mid (b + c) \).

Let \(a, b, c \) be any integers such that \(a \mid b \) and \(a \mid c \), and show that \(a \mid (b + c) \).

By defn. of \(\mid \), we know \(\exists s: b = as \), and \(\exists t: c = at \). Let \(s, t \), be such integers.

Then \(b + c = as + at = a(s + t) \), so \(\exists u: b + c = au \), namely \(u = s + t \). Thus \(a \mid (b + c) \).
Module #8 – Number Theory

Prime Numbers

• An integer $p > 1$ is *prime* iff it is not the product of any two integers greater than 1:
 $$p > 1 \land \neg \exists a, b \in \mathbb{N}: a > 1, b > 1, ab = p.$$

• The only positive factors of a prime p are 1 and p itself. Some primes: 2, 3, 5, 7, 11, 13...

• Non-prime integers greater than 1 are called *composite*, because they can be *composed* by multiplying two integers greater than 1.
Review of §2.4 So Far

- \(a \mid b \iff \text{“a divides b”} \iff \exists c \in \mathbb{Z}: b = ac \)
- \(\text{“p is prime”} \iff p > 1 \land \neg \exists a \in \mathbb{N}: (1 < a < p \land a \mid p) \)
- Terms \textit{factor, divisor, multiple, composite}.
Fundamental Theorem of Arithmetic
Its “Prime Factorization”

• Every positive integer has a unique representation as the product of a non-decreasing series of zero or more primes.
 – $1 = \text{(product of empty series)} = 1$
 – $2 = 2 \text{ (product of series with one element 2)}$
 – $4 = 2 \cdot 2 \text{ (product of series } 2,2)\n – 2000 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5; \quad 2001 = 3 \cdot 23 \cdot 29;$
 \quad 2002 = 2 \cdot 7 \cdot 11 \cdot 13; \quad 2003 = 2003$
An Application of Primes

• When you visit a secure web site (https:… address, indicated by padlock icon in IE, key icon in Netscape), the browser and web site may be using a technology called RSA encryption.

• This public-key cryptography scheme involves exchanging public keys containing the product pq of two random large primes p and q (a private key) which must be kept secret by a given party.

• So, the security of your day-to-day web transactions depends critically on the fact that all known factoring algorithms are intractable!

 – Note: There is a tractable quantum algorithm for factoring; so if we can ever build big quantum computers, RSA will be insecure.
The Division “Algorithm”

- Really just a *theorem*, not an algorithm…
 - The name is used here for historical reasons.
- For any integer *dividend* a and *divisor* $d \neq 0$, there is a unique integer *quotient* q and *remainder* $r \in \mathbb{N}$ such that $a = dq + r$ and $0 \leq r < |d|$.
- $\forall a, d \in \mathbb{Z}, d > 0: \exists ! q, r \in \mathbb{Z}: 0 \leq r < |d|, a = dq + r$.
- We can find q and r by: $q = \lfloor a/d \rfloor$, $r = a - qd$.
Greatest Common Divisor

- The greatest common divisor \(\text{gcd}(a,b) \) of integers \(a,b \) (not both 0) is the largest (most positive) integer \(d \) that is a divisor both of \(a \) and of \(b \).

\[
d = \text{gcd}(a,b) = \max(d: d|a \land d|b) \iff \\
d|a \land d|b \land \forall e \in \mathbb{Z}, (e|a \land e|b) \rightarrow d \geq e
\]

- Example: \(\text{gcd}(24,36)=? \)
 Positive common divisors: 1,2,3,4,6,12…
 Greatest is 12.
GCD shortcut

• If the prime factorizations are written as

 \[a = p_1^{a_1} p_2^{a_2} \ldots p_n^{a_n} \quad \text{and} \quad b = p_1^{b_1} p_2^{b_2} \ldots p_n^{b_n}, \]

 then the GCD is given by:

 \[\gcd(a, b) = p_1^{\min(a_1, b_1)} p_2^{\min(a_2, b_2)} \ldots p_n^{\min(a_n, b_n)}. \]

• Example:

 - \(a = 84 = 2^2 \cdot 3^1 \cdot 7^1 \)
 - \(b = 96 = 2^5 \cdot 3^1 \cdot 7^0 \)
 - \(\gcd(84, 96) = 2^2 \cdot 3^1 \cdot 7^0 = 2 \cdot 2 \cdot 3 = 12. \)
Relative Primality

- Integers a and b are called *relatively prime* or *coprime* iff their $\gcd = 1$.
 - Example: Neither 21 and 10 are prime, but they are *coprime*. $21 = 3 \cdot 7$ and $10 = 2 \cdot 5$, so they have no common factors > 1, so their $\gcd = 1$.

- A set of integers $\{a_1, a_2, \ldots\}$ is (*pairwise*) *relatively prime* if all pairs $a_i, a_j, i \neq j$, are relatively prime.
Least Common Multiple

• lcm(a,b) of positive integers a, b, is the smallest positive integer that is a multiple both of a and of b. E.g. lcm(6,10)=30

 \[m = \text{lcm}(a,b) = \min(m: a|m \land b|m) \iff a|m \land b|m \land \forall n \in \mathbb{Z}: (a|n \land b|n) \to (m \leq n) \]

• If the prime factorizations are written as

 \[a = p_1^{a_1} p_2^{a_2} \ldots p_n^{a_n} \text{ and } b = p_1^{b_1} p_2^{b_2} \ldots p_n^{b_n}, \]

 then the LCM is given by

 \[\text{lcm}(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \ldots p_n^{\max(a_n,b_n)}. \]
The mod operator

- An integer “division remainder” operator.
- Let $a,d \in \mathbb{Z}$ with $d > 1$. Then $a \mod d$ denotes the remainder r from the division “algorithm” with dividend a and divisor d; i.e. the remainder when a is divided by d. (Using e.g. long division.)
- We can compute $(a \mod d)$ by: $a - d \lfloor a/d \rfloor$.
- In C programming language, “%” = mod.
Module #8 – Number Theory

Modular Congruence

- Let $Z^+ = \{n \in Z \mid n > 0\}$, the positive integers.
- Let $a, b \in Z$, $m \in Z^+$.
- Then a is congruent to b modulo m, written “$a \equiv b \pmod{m}$”, iff $m \mid a - b$.
- Also equivalent to: $(a - b) \mod m = 0$.
- (Note: this is a different use of “\equiv” than the meaning “is defined as” I’ve used before.)
Module #8 – Number Theory

Spiral Visualization of mod

Example shown: modulo-5 arithmetic

\[\equiv 0 \pmod{5} \]

\[\equiv 1 \pmod{5} \]

\[\equiv 2 \pmod{5} \]

\[\equiv 3 \pmod{5} \]

\[\equiv 4 \pmod{5} \]
Useful Congruence Theorems

• Let $a, b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$. Then:

 $a \equiv b \pmod{m} \iff \exists k \in \mathbb{Z} \ a = b + km$.

• Let $a, b, c, d \in \mathbb{Z}$, $m \in \mathbb{Z}^+$. Then if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then:

 ▪ $a + c \equiv b + d \pmod{m}$, and

 ▪ $ac \equiv bd \pmod{m}$
Module #8 – Number Theory

Rosen §2.5: Integers & Algorithms

• Topics:
 – Euclidean algorithm for finding GCD’s.
 – Base-\(b\) representations of integers.
 • Especially: binary, hexadecimal, octal.
 • Also: Two’s complement representation of negative numbers.
 – Algorithms for computer arithmetic:
 • Binary addition, multiplication, division.
Euclid’s Algorithm for GCD

• Finding GCDs by comparing prime factorizations can be difficult if the prime factors are unknown.
• Euclid discovered: For all integers a, b,
 \[\gcd(a, b) = \gcd((a \mod b), b). \]
• Sort a, b so that $a > b$, and then (given $b > 1$)
 \((a \mod b) < a\), so problem is simplified.

Euclid of Alexandria
325-265 B.C.
Euclid’s Algorithm Example

- \(\text{gcd}(372, 164) = \text{gcd}(372 \mod 164, 164) \).
 - \(372 \mod 164 = 372 - 164 \left\lfloor 372/164 \right\rfloor = 372 - 164 \cdot 2 = 372 - 328 = 44 \).

- \(\text{gcd}(164, 44) = \text{gcd}(164 \mod 44, 44) \).
 - \(164 \mod 44 = 164 - 44 \left\lfloor 164/44 \right\rfloor = 164 - 44 \cdot 3 = 164 - 132 = 32 \).

- \(\text{gcd}(44, 32) = \text{gcd}(44 \mod 32, 32) = \text{gcd}(12, 32) = \text{gcd}(32 \mod 12, 12) = \text{gcd}(8, 12) = \text{gcd}(12 \mod 8, 8) = \text{gcd}(4, 8) = \text{gcd}(8 \mod 4, 4) = \text{gcd}(0, 4) = 4. \)
Euclid’s Algorithm Pseudocode

procedure $gcd(a, b$: positive integers)
 while $b \neq 0$
 $r := a \mod b$; $a := b$; $b := r$
 return a

Fast! Number of while loop iterations turns out to be $O(log(max(a,b)))$.

Sorting inputs not needed b/c order will be reversed each iteration.
Base-

- number systems

- Ordinary we write base-10 representations of numbers (using digits 0-9).
- 10 isn’t special; any base \(b > 1 \) will work.
- For any positive integers \(n, b \) there is a unique sequence \(a_k a_{k-1} \ldots a_1 a_0 \) of digits \(a_i < b \) such that

\[
 n = \sum_{i=0}^{k} a_i b^i
\]

The “base \(b \) expansion of \(n \)”

See module #12 for summation notation.
Module #8 – Number Theory

Particular Bases of Interest

- Base $b=10$ (decimal):
 10 digits: 0,1,2,3,4,5,6,7,8,9.

- Base $b=2$ (binary):
 2 digits: 0,1. (“Bits”=“binary digits.”)

- Base $b=8$ (octal):
 8 digits: 0,1,2,3,4,5,6,7.

- Base $b=16$ (hexadecimal):
 16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

- Used only because we have 10 fingers
- Used internally in all modern computers
- Octal digits correspond to groups of 3 bits
- Hex digits give groups of 4 bits
Converting to Base b

(Algorithm, informally stated)

- To convert any integer n to any base $b > 1$:
 - To find the value of the *rightmost* (lowest-order) digit, simply compute $n \mod b$.
 - Now replace n with the quotient $\lfloor n/b \rfloor$.
 - Repeat above two steps to find subsequent digits, until n is gone ($=0$).

Exercise for student: Write this out in pseudocode…
Addition of Binary Numbers

procedure add(a_{n-1}...a_0, b_{n-1}...b_0: binary representations of non-negative integers a,b)
carry := 0
for bitIndex := 0 to n-1 {go through bits}
 bitSum := a_{bitIndex} + b_{bitIndex} + carry {2-bit sum}
 s_{bitIndex} := bitSum mod 2 {low bit of sum}
 carry := \lfloor bitSum / 2 \rfloor {high bit of sum}
s_n := carry
return s_n...s_0: binary representation of integer s
Two’s Complement

- In binary, negative numbers can be conveniently represented using two’s complement notation.
- In this scheme, a string of n bits can represent any integer i such that $-2^{n-1} \leq i < 2^{n-1}$.
- The bit in the highest-order bit-position ($n-1$) represents a coefficient multiplying -2^{n-1};
 - The other positions $i < n-1$ just represent 2^i, as before.
- The negation of any n-bit two’s complement number $a = a_{n-1} \ldots a_0$ is given by $\overline{a_{n-1} \ldots a_0} + 1$.

The bitwise logical complement of the n-bit string $a_{n-1} \ldots a_0$.

(c)2001-2003, Michael P. Frank
Module #8 – Number Theory

Correctness of Negation Algorithm

• Theorem: For an integer \(a\) represented in two’s complement notation, \(-a = \overline{a} + 1\).

• Proof: \(a = -a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + \ldots + a_02^0\), so \(-a = a_{n-1}2^{n-1} - a_{n-2}2^{n-2} - \ldots - a_02^0\).

Note \(a_{n-1}2^{n-1} = (1-\overline{a}_{n-1})2^{n-1} = 2^{n-1} - \overline{a}_{n-1}2^{n-1}\).

But \(2^{n-1} = 2^{n-2} + \ldots + 2^0 + 1\). So we have

\[-a = -\overline{a}_{n-1}2^{n-1} + (1-\overline{a}_{n-2})2^{n-2} + \ldots + (1-\overline{a}_0)2^0 + 1 = \overline{a} + 1.\]
procedure subtract($a_{n-1} \ldots a_0, b_{n-1} \ldots b_0$):

binary two’s complement representations of integers a,b)

return $add(a, add(\overline{b},1))$ \{ $a + (-b)$ \}

This fails if either of the adds causes a carry into or out of the $n-1$ position, since

$2^{n-2} + 2^{n-2} \neq -2^{n-1}$, and $-2^{n-1} + (-2^{n-1}) = -2^n$

isn’t representable!
procedure multiply\((a_{n-1}\ldots a_0, b_{n-1}\ldots b_0:\text{ binary representations of } a, b \in \mathbb{N})\)

\[\text{product} := 0\]

\[\text{for } i := 0 \text{ to } n-1\]

\[\text{if } b_i = 1 \text{ then}\]

\[\text{product} := \text{add}(a_{n-1}\ldots a_0 0^i, \text{product})\]

\[\text{return } \text{product}\]

\(i\) extra 0-bits appended after the digits of \(a\)
Module #8 – Number Theory

Binary Division with Remainder

procedure div-mod($a,d \in \mathbb{Z}^+$) {Quotient & rem. of a/d.

$n := \max(\text{length of } a \text{ in bits, length of } d \text{ in bits})$

for $i := n-1$ downto 0

if $a \geq d0^i$ then {Can we subtract at this position?}

$q_i := 1$ {This bit of quotient is 1.}

$a := a - d0^i$ {Subtract to get remainder.}

else

$q_i := 0$ {This bit of quotient is 0.}

end if

$r := a$

return q,r {q = quotient, r = remainder}