CORRELATION

Positive Relationship

![Graph showing positive correlation between test score and ability.]

Negative Relationship

![Graph showing negative correlation between test score and ability.]

No Relationship

![Graph showing no relationship between test score and hair length.]

\(r = +1 \)

\(r = -1 \)

Stronger Positive

![Graph showing stronger positive correlation between test score and ability.]

Weaker

![Graph showing weaker positive correlation between test score and ability.]

Stronger Negative

![Graph showing stronger negative correlation between test score and ability.]

Weaker

![Graph showing weaker negative correlation between test score and ability.]
<table>
<thead>
<tr>
<th>r</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONG</td>
<td>1.00</td>
</tr>
<tr>
<td>MODERATE</td>
<td>.64</td>
</tr>
<tr>
<td>WEAK</td>
<td>.09</td>
</tr>
</tbody>
</table>

$\text{NO} \rightarrow \text{YES}$

r underestimates a curved relationship.

Curvilinearity

r underestimates the relationship at one point and overestimates at another point.

Heteroscedasticity

r overestimates r underestimates

Outliers

r underestimates

Restriction of Range

Weight

Height

Reading Ability

$\text{Months since beginning first grade}$
FORMULAS FOR CORRELATION

\[
r = \frac{1}{n} \sqrt{\frac{(\sum XY - (\sum X)(\sum Y))^2}{(\sum X^2 - (\sum X)^2/n)(\sum Y^2 - (\sum Y)^2/n)}}
\]

\[
r = \frac{(\sum SP_{XY})^2}{(SS_x)(SS_y)}
\]

\[
r = \frac{1}{\sqrt{(\sum (x-\bar{x})(y-\bar{y}))^2}}
\]

\[
r = \frac{\sum z_x z_y}{n}
\]
Review of Pearson r as a measure of correlation

1. r is an index of the **linear** relationship between two variables.

2. The sign of r indicates the direction of the relationship, the magnitude of r indicates its strength.

3. Scattergrams (also called scatter diagrams) are graphic portrayals of r. If the trend of the points is /, then r is positive. If the trend is \, then r is negative. The spread of the points indicates the strength of r. If the points are close to a straight line, then r is stronger; if they are more spread out, then r is weaker.

4. r can be calculated using the z score formula, the raw score (computational) formula, or the deviation (definitional) formula.

5. r does not imply causation. r is not equal to the percent of relationship between the variables.

6. Regardless of how much of a relationship actually does or does not exist, r can be misleading if there is curvilinearity, heteroscedasticity, outliers, restriction of range, or unreliable measurement.