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Abstract 
The present work investigates using a minimum-blocking dataflow software architecture as the basis 
for improving performance of parallel bidirectional search on multiple-instruction multiple-data 
(MIMD) and single-instruction multiple-thread (SIMT) multiprocessors. The approach represents 
individual states as minimum-size, immutable objects. It uses work queues to distribute states-for-
expansion among worker threads, and it uses sets to keep track of states previously explored in each 
direction. The Java design uses a non-blocking queue class and a minimum-blocking set class from 
the Java library, while the C++11 design uses custom non-blocking classes built atop atomic 
operations recently added to the language. The SIMT, C++ / Cuda design takes a heterogeneous map 
/ reduce approach that expands states in parallel on a Tesla-Fermi graphical processing unit (GPU), 
and then eliminates dead states, cycles, and detects solutions on a multicore MIMD host processor. 
Rather than step worker threads through state transitions using blocking synchronization, these 
designs flow states to be expanded to worker threads in the order required by bidirectional search. 
Topics include engineering steps taken in migrating search algorithm design from Java through 
C++11 to Cuda, along with examination of the impact of each step on performance. 
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1.  Introduction and related work 
Bidirectional search is a classic approach to solving search space problems when both the initial and 
final states of the search are known in advance [1]. It searches for paths that connect these two 
states, typically searching for minimum-length paths. In problems with exponential growth of the 
search space size as a function of search path length, bidirectional search reduces the number of 
states inspected over unidirectional approaches by integrating the results of two shorter paths that 
grow simultaneously from the initial and final states. 
 Bidirectional search is an interesting algorithm for adaptation to parallel programming because it 
aims at improving run-time performance over simpler search algorithms such as depth-first or 
breadth-first search, and because it lends itself to parallel implementation. Figure 1 is a schematic 
view of bidirectional search as exploration of a maze in search of the shortest path, given knowledge 
of both the entrance and exit locations. Regardless of the concrete problem being solved, 
bidirectional search always requires knowledge of the starting and ending states of the search. It 
often utilizes problem-specific heuristics to prune the search space, but it is not required to do so. 
 The fundamental point of bidirectional search is to limit the exponential growth in number of states 
explored in a single direction by exploring two shorter paths, one from each direction, and then 
detecting states in which those opposing paths meet. The outermost set of states currently being 
explored in either direction constitutes that direction’s frontier. A single-threaded bidirectional 
search uses a first-in first-out (FIFO) queue of states to expand as a work queue. The algorithm first 
enqueues the initial state and final state in the work queue, after which it iteratively removes a state, 



computes its single-step expansions, checks for cycles (and converging DAG paths in some 
applications) within the states of its originating direction, and checks for collisions with states 
coming from the opposite direction. Cycle / converging paths and collision checking require storing 
explored states in a set that is keyed on location in the space + search direction, or two sets that are 
keyed on location only. Detection of opposing-path collisions uncovers shortest-path solutions to the 
problems. In the absence of cycles / converging paths and solutions, the algorithm enqueues one or 
more single-step expansions and repeats these steps until it locates a solution. 
 The worst case time, space complexity for unidirectional breadth-first search is O(bd+1), where 
base b is the number of alterative branches (branching factor) in the search path that can be taken at 
any step, and exponent d is the depth (or equivalently length) of the path. When b==3, for example, 
an un-pruned frontier contains 3 possible states after 1 step, 9 possible states after 2 steps, and so on, 
generalizing to bd states at the frontier, although some may be eliminated through detection of 
cycles, converging DAG paths, or via application-specific heuristics. The total states explored 
leading up to the frontier + the frontier itself grows at the rate O(bd+1). 
 Bidirectional breadth-first search, in contrast, grows at the much lower rate O(bd/2). Each of the 
two search directions in bidirectional search grows to only half the length of the corresponding 
unidirectional search, thereby cutting down on the massive exponential growth in explored states 
that comes with the relative doubling of length in unidirectional search. 
 Recent work reported on integrating parallel processing with bidirectional search focuses on 
applying parallel implementation of heuristic strategies to prune the search space [2-4]. Using 
application-oriented heuristics to radically reduce the number of states explored is the primary 
means for accelerating the basic bidirectional algorithm. Observing the incremental state expansion 
of a search domain often uncovers useful heuristics. 
 The present work is an outgrowth of curriculum development for a senior and graduate level course 
in MIMD parallel programming with Java [5, 6]. This work extends that by exploring the software 
engineering steps taken in migrating parallel bidirectional search from Java to C++11 and Cuda and 
by examining the performance results. 

2.  Minimum-Blocking Approach in Java 
The initial, Java-based solution to parallel bidirectional search uses the algorithm of Listing 1, which 
implements a dataflow architecture that routes states-to-be-expanded to worker threads. Each 
immutable state object contains its internal state fields and an immutable reference to its predecessor 
in its search path. 
 Insertion of a state into the work queue and retrieval from the work queue do not block in this 
algorithm. The viability of non-blocking retrieval depends on the fact that exponential growth of the 
search space ensures that most dequeue operations will receive a state-to-expand from the work 
queue. It is only at the beginning of the search that some threads do not initially find states-to-
expand via the non-blocking dequeue operation. Those threads resort to a polling loop, trying the 
queue repeatedly until they receive a state to expand.  Idle polling consumes processors only until 
the work queue begins to grow at an exponential rate. The Java implementation uses the 
ConcurrentLinkedQueue from the java.util.concurrent library package as the work queue. The 
documentation for that class states that, “This implementation employs an efficient ‘wait-free’ 
algorithm.” [7, 8]  
 The forwardStatesSet and backwardStatesSet of Listing 1 are objects of class ConcurrentHashMap 
of java.util.concurrent. There is no comparable Set class per se, but the keys of a Map can serve as 
elements of a Set. The documentation for this class states, “However, even though all operations are 
thread-safe, retrieval operations do not entail locking.” Write locks are distributed across a number 
of stripes, where a stripe is a subset of the buckets in the hash table [9]. When two writers do not 
collide on the same stripe, they do not impede each other via blocking access to a shared lock. 



Application programmers can adjust the number of stripes, trading increased parallelism against the 
memory cost of maintaining additional lock stripes. 
 A change of the frontier direction in the algorithm of Listing 1 does not block until other threads 
have completed expansion of the current direction, forward or backward. An earlier design used the 
CyclicBarrier class from java.util.concurrent to restrict worker threads to expanding states in one 
direction at a time, but this state machine-oriented restriction caused unnecessary coarse-grain 
synchronization delays between threads [6]. The dataflow algorithm of Listing 1 interleaves worker 
thread expansion of forward and backward states. With a high lookup-to-insertion ratio for StatesSet 
members – all insertions are preceded by lookups to detect cycles and solutions – locking is minimal 
and configurable via the StatesSet’s stripes constructor parameter. 
 Dispensing with coarse-grain synchronization of the two-phase state machine is possible because 
states flow through the work queue in approximately the correct order. Forward states-to-expand 
alternate with reverse states-to-expand, partitioned by frontier-being-expanded for the most part. 
 This temporal sequencing of wave fronts is stochastic, not deterministic. A thread that finds most 
(but not all) of its state expansions to be dead ends (cycles or converging DAG paths) for a series of 
dequeue operations places frontier states onto the work queue quickly; some worker threads could be 
two phases ahead of other threads, expanding a path of length L+1 for a given direction while some 
threads are expanding paths of length L for that same direction. There is no particular problem in 
occasionally “getting ahead,” as implied by the overlapping frontiers of Figure 1. A thread that has 
gotten ahead on one turn may find an opposing path one level deeper into the opposing side’s search 
space, but the discovered path is still a solution path. The algorithm stores only the set of minimum-
length solution paths in the set of solutions. Normally, by the time a thread has reached level N+1 in 
the search from its dequeued state-to-expand’s origin, all other threads have dequeued all level N 
states from the work queue, and they will complete expansion of those N-level states before 
checking the isdone flag set by the first solution’s discovery. Some of those N level expansions may 
be redundant with the N+1 level solution from the thread that “got ahead.” The algorithm discards 
such redundant solutions. 
 The algorithm of Listing 1 may make it possible for some advanced states-to-expand to be multiple 
frontier levels ahead of other states being expanded in the same direction. If the thread that is 
expanding a level N+2 (or higher) state sets the isdone flag while other level N states are being 
expanded in the same direction, then some solutions could be missed in an exhaustive search for all 
distinct minimum-length paths. The fix is to discard a state-to-expand after a solution has been 
found, if the state-to-expand has a path length greater than the integer ceiling of ½ of the known 
solution’s length, setting the isdone flag at that point. The length of the first known solution helps to 
prune state expansions. At the point that the work queue becomes empty after the isdone flag is set 
to true, worker threads can terminate their work. Of course, a thread may detect this condition and 
terminate just before another thread enqueues a state-to-expand, but at that point processing is 
converging on the last of the solutions, and the thread that enqueued the state-to-expand is 
guaranteed to be available to dequeue that state-to-expand, if no other thread gets there first. States-
to-expand in possible solution paths will not be left in the work queue by all terminating threads, and 
detection of the isdone flag in combination with an empty work queue indicates convergence on the 
last of the solution paths. 



3.  Shortest path performance for Java1 
3.1  The basic Java implementation 
Performance measurement uses a representative puzzle-solving application of bidirectional search, 
that of finding the solution of the so-called “Penny-Dime puzzle,” where there is an arrangement of 
some number N of pennies P, followed by one blank space, followed the same number N of dimes 
D. The goal is to find the series of moves that will reverse a sequence such as PPPPPP_DDDDDD to 
the sequence DDDDDD_PPPPPP. Legal moves consist of moving a coin one location into the space, 
or jumping a coin over a single neighbor (as in checkers) to the space. Heuristics such as avoiding 
retrograde moves can accelerate the search, but the overall form of the algorithm is typical for 
bidirectional search. Utilizing application-specific patterns of coin movement can reduce the time 
complexity of the search to a polynomial-time problem, but the benchmark results reported here do 
not take this pattern-directed approach. Each state expansion consists of one of up to four legal 
moves, while avoiding retrograde moves consisting of movement of a penny P to the left or a dime 
D to the right. The implementation measured here actually expands a state pair at each expansion 
step, where a state pair consists of a forward state expansion and its mirror-symmetric backward 
state expansion. Expanding a mirror-symmetric state pair in one step cuts down on redundant 
computational cost. Bidirectional search problems that exhibit mirror symmetries in forward and 
backward expansion paths can utilize this improvement, while others cannot. 
 The total number of possible states for a puzzle of an odd number p positions, where one position 
is blank, (p-1)/2 positions hold pennies and the same number of positions hold dimes, is 

p * ((p – 1)! / (((p – 1) / 2)! * ((p – 1) / 2)!)) = p * ((p – 1)! / (((p – 1) / 2)!2)) 
 The sub-equation ((p – 1)! / (((p – 1) / 2)! * ((p – 1) / 2)!)) is simply the equation for the 
combination of n things taken r at a time = n! / ((n – r)! * r!) [10], with n = p – 1 (the number of 
non-blank locations) and r = (p – 1) / 2 (the number of locations occupied by a coin of one type). 
Since n – r = r for this puzzle – there is an equal number of pennies and dimes – this sub-equation 
reduces to ((p – 1)! / (((p – 1) / 2)!2)). The leading “p *” multiplier accounts for all possible 
locations of the blank. For example, a 3-position puzzle has 6 states, a 5-position puzzle has 30 
states, a 7-position puzzle has 140 states, and 9-position puzzle has 630 states. Benchmarks 
considered in this report extend to 49-position puzzles with 1,580,132,580,471,900 possible states 
and 51-position puzzle with 6,446,940,928,325,352 possible states. 
 Bidirectional search is involved in exploring only the states within the intersecting search cones of 
Figure 1 in order to find solution paths. In principle the branching factor b of the search time and 
space complexity O(bd/2) as previously discussed is b = 4, which is the largest number of legal 
expansions of a given state using the rules of the puzzle. Eliminating “undo moves” that cancel out 
the most recent state expansion leading to the current state being expanded reduces the branching 
factor for the puzzle to b = 3 for all but the first moves. Eliminating all retrograde moves including 
“undo moves” and eliminating all cycles for a given direction reduces the effective branching factor 
further. Examination of empirical growth in the number of states for this puzzle uncovers a data-
fitting growth formula of 2(p – 5) / 2 + 6 for p positions, with solution path length d = ((p + 1) / 2)2 - 1, 
where d+1 gives the total number of states along a solution path that include the start and end states. 
Thus, while the solution path length grows with the square of the puzzle size p, pruned search yields 
a branching factor b = 2 with an exponent that grows as a linear function of puzzle size p. 
 The machine used for benchmarks is a 3.6 GHz, 16-threaded Intel PC running a 64-bit Linux 
kernel and Java Version 1.6.0_22. It houses two Intel Xeon x5687 processor packages with four 
dual-threaded cores in each, yielding 8 cores x 2 threads = 16 threads of execution. Each of the two 
                                                
1 All benchmark code reported in this paper is available under the Intel Academic Community 

Educational Exchange, http://software.intel.com/en-us/courseware/, credited to the author, entitled 
“Parallel Programming in Java,” beginning in autumn 2012. 



packages has 12 Mbyte of L2 cache. The individual states of the Penny-Dime puzzle are small, 
although references to a large number of these small state objects reside in the work queue(s) and 
sets of the algorithm, with roughly half in the queue(s) and half in the sets for b = 2. All benchmarks 
use variations of the minimal-blocking algorithm of Listing 1, without the bottleneck created by the 
blocking CyclicBarrier of Listing 1 given in an earlier publication [6]. Each implementation of the 
benchmark searches using 16 software threads unless otherwise noted. 
 Graph 1 shows execution time in real seconds as a function of the number of worker threads 
employed, seen on the logarithmic X axis, for four different container class combinations on a 
puzzle with 29 positions (14 pennies, 14 dimes and 1 blank yielding 262,144 states). The fastest, 
labeled libsetq, uses Java’s ConcurrentLinkedQueue and ConcurrentHashSet as previously outlined. 
A second combination, labeled libsetmultiq, uses multiple ConcurrentLinkedQueue objects, one per 
worker thread. Each worker thread reads only its own work queue of states-to-expand. All threads 
use a single, shared atomic counter to determine the next queue to write in circular, round-robin 
order. This multiple queue approach eliminates thread contention for reading a work queue and it 
minimizes the probability of write contention by spacing consecutive writes to a given queue as far 
apart as possible in relation to the other queues. Using multiple queues yields substantial 
performance improvement for some applications, e.g., a 2x improvement as reported in [6]. 
However, Graph 1 shows that the Penny-Dime problem does not benefit from this approach. The 
libsetmultiq performance curve is marginally worse than the basic libsetq approach, converging with 
the latter at 16 threads. This lack of improvement illustrates the fact that contention for access to the 
queue is not a bottleneck in this application, while the cost of accessing multiple queues and using 
an atomic, round-robin write index has a small detrimental effect. 
 The two remaining curves of Graph 1, labeled mysetq and mysetmultiq, show results for using the 
corresponding single-queue and multiple-queue approaches with custom, lock-free queue and set 
container classes, named MultiCircularQueue and EmbeddedHashSet, built atop Java atomic 
reference variables [5]. Building and using these custom classes is primarily a step in prototyping 
their implementation and application for later C++11 and Cuda rewrites of bidirectional search, 
because these C++ platforms do not have counterparts of Java’s ConcurrentLinkedQueue and 
ConcurrentHashMap classes. 
 MultiCircularQueue takes the basic circular buffer approach to implementing a FIFO [11] of 
references to state objects while using atomic operations available in Java as well as C++11 and 
Cuda GPU 2.0 devices to serialize thread access separately at each end of the a queue. Figure 2 
illustrates the approach. To enqueue a reference to a state object, a thread atomically compares-and-
sets an object reference in place of a null reference at the rear of the queue, where rear, front and 
size are atomic integer indices. In the case where the preceding atomic reference was in fact null, the 
thread essentially locks the queue for insertion until it updates the size variable, and then the rear 
variable to the next null location in the queue, unlocking the queue. In the case where a thread 
unsuccessfully attempts to atomically compare-and-set a non-null reference because the queue is 
currently locked for enqueuing, it either spins until the writing thread releases the spin lock for the 
single-queue case, or it goes onto the next queue for the multiple-queue case. Dequeuing is similar, 
using compare-and-set to conditionally retrieve a non-null value, and replace it with a null value, 
thereby obtaining the front spin lock. After completion the reading thread updates size and then front 
to index a non-null location, thereby releasing the spin lock. If the queue is empty, the reading thread 
returns a null reference, similar to using ConcurrentLinkedQueue’s poll method. 
 Serialization of thread access within EmbeddedHashSet is simpler. Instead of taking the now-
common approach of using a chaining hash table, where each bucket in the hash table stores a 
pointer to a list of elements that happen to collide on the hash function, the present work uses an 
open addressing hash table that follows a hashing collision by rehashing to a different location in 
the table, repeatedly rehashing if necessary until finding either the search element or a null reference 
[12]. EmbeddedHashSet stores either a null value or a reference to a valid state object as an atomic 



value at each location in the table. Key-based retrieval, where the key in this search application is a 
search state, uses atomic retrieval until finding either the desired state or a null reference, signifying 
end of search. Key-based insertion uses an atomic compare-and-set operation to replace a null value 
in the table with a reference to the inserted state value. When a hash bucket’s reference is non-null, 
either it is the searched-for key, in which case the search has terminated by finding a previously 
stored state object reference, or it is not, in which case search proceeds via rehashing. Listing 2 gives 
the concise Java code for the core of the table search function, where variable e of generic reference 
class E is the subject of search, table is the open address hash table of reference type E, and result is 
a two-element integer array used to return the bucket number in element 0 and the search status in 
element 1 to the calling add, contains or get method. 
 Well-known problems with efficiency of deletion of elements from an open addressing hash table 
[13] do not affect the present approach to bidirectional search because the algorithm of Listing 1 
never deletes a state reference from a hash table. EmbeddedHashSet supports only insertion and 
lookup. Open addressing avoids dynamic memory management overhead and synchronization 
bottlenecks when the size of the table can be constrained in advance, as well as avoiding multiple 
memory accesses entailed by traversal of table + list data structures. These properties make it a 
reasonable fit for embedded processors with poor dynamic memory management behavior such as 
network processors [14, 15] and graphical processing units [16]. The rehashing approach of Listing 
2 is to add an odd prime number prm to a colliding bucket number, where hashing computes an 
index into an array of odd prime numbers using a second hash function that differs from the primary 
hash function, and a prime number prm retrieved from the table permutes an N-sized table in at 
most N steps when N is a power of two. Using two distinct hash functions for primary hashing 
versus rehashing along with the pseudo-random sequencing of key-selected primes for permuting the 
table after collisions avoids common clustering problems in the table associated with colliding states 
/ keys [11-13], as long as the hash functions are good. Ensuring a good hash function is a matter for 
the next section. 
 Open addressing for bidirectional search is preferable to cuckoo hashing adapted to graphical 
processors because of design simplicity and fewer memory accesses when using a good hash 
function [17]. Alcantara’s 2011 Ph.D. dissertation [18] investigates an atomic approach to open 
addressing similar to the one used here [15], listing three problems with open addressing as 
compared with the adapted cuckoo approach. First, “Performance drops significantly for compact 
tables,” when the density (ratio of occupied buckets to total buckets) exceeds 67%. The present work 
sizes tables so that they never exceed 50% density, trading memory size and spatial locality in order 
to minimize the number of memory accesses for a good hash function. Second, “High variability in 
probe sequence lengths” can lead to performance problems. Analysis of the Penny-Dime hashing 
function summarized below has essentially eliminated this variability. Finally, “Removing items 
from the table is not straightforward.” As noted above, bidirectional search as given in Listing 1 
does not remove state object references from the forward-path and backward-path hash sets after 
insertion. Bidirectional search as given in Listing 1 is not specific to the Penny-Dime puzzle. It 
works for any application of bidirectional search. Element removal is unnecessary. 
 To complete the discussion of Graph 1, mysetq and mysetmultiq that use custom classes 
MultiCircularQueue and EmbeddedHashSet, both based on non-blocking atomic operations, perform 
marginally worse here than libsetq and libsetmultiq based on Java’s ConcurrentLinkedQueue and 
ConcurrentHashmap. Graph 2 measures the same four programs by varying the number of coin 
positions p from 25 through 33 while keeping the number of threads fixed at 16. The relative 
effectiveness of the approaches is similar, with the cost of multiple queues outweighing the benefits, 
and with time growing at somewhat more than the doubling rate in the number of states per coin-
slot-pair given by 2(p – 5) / 2 + 6. The fixed terms in execution time as well as inter-thread contention 
for the memory manager and for hash table access account for some of the steeper growth rate in 
time. A benchmark examined below uncovers an additional source of overhead in this growth rate. 



 The marginal differences in performance of configurations in Graphs 1 and 2 is less important than 
the fact that MultiCircularQueue and EmbeddedHashSet represent demonstrably viable designs for 
C++11, which offers no thread-safe queue and hash set library classes, as well as for Cuda, which 
offers support for atomic operations in newer devices but not for lock-based thread-safe queues and 
hash sets. 

3.2  The effects of a better application hash function 
Given the promising look of performance in Graphs 1 and 2, the next step in this process is to 
attempt to improve the hash function for state objects. Listing 3 gives the initial, naïve hash function 
for a state object stored in the hash table, where initOpen is the position of the blank coin slot. The 
goal when coding this initial version was to get something working. This hash function computes a 
32-bit integer hashcode value and stores it in an immutable field in each application state object. The 
library and custom hash table classes fold the upper bits that are outside the range of their table 
indices into the lower bits using the exclusive-or operator, and then use the resulting integer as a 
bucket number. 
 The function of Listing 3 uses the integer encoding of each penny, dime, and the blank space 
stored in the byte-valued initVector array as a multiplier that is weighted by its position in this array. 
The State class stores coins and the blank as integers in an array, one position per element. The 
intent was to use the distinct integer value of each coin type and blank, coupled with the unique 
weight of its position, to create a hash function capable of distinguishing among state configurations. 
There are two obvious problems with this hash function at the outset. First, no account is made for 
the likelihood that some bits contributed by the positioned coins will overflow the 32 bits of the hash 
code. Second, the encodings for a penny and a dime do not permute the space of potential encodings, 
making this function likely to result in clustering of hash values. 
 Instrumenting the code for class EmbeddedHashSet reveals the glaring deficiency of this hash 
function. A test run of the mysetq configuration for 33 coin positions and 16 threads, corresponding 
to the rightmost measurement of Graph 2, shows that 1,463,731 initial probes into the 474,204 
element forward-path hash table led to 821,859,095 subsequent rehashes on collisions, and that 
960,974 initial probes into the 474,204 element backward-path hash table led to 541,068,155 
subsequent rehashes on collisions, giving the ratio of rehash probes to initial hash probes of about 
562 to 1. 
 Listing 4 shows the final hashing function used after analysis and some experimentation. This 
function exploits the fact that the positions of the dimes and the blank space, or equivalently the 
pennies and the blank space, fully determine the state. That is the reason that this hash function 
inspects only dimes and the blank position. Its use of the “<< 6” operation ensures that it distributes 
cumulative coin bits across the hashcode, while its simultaneous use of the unshifted cumulative 
coin bits ensures that it loses no bits of information. It encodes the blank, open position differently in 
order to differentiate it from a coin. This hash function is loosely based on polynomial arithmetic as 
implemented for Ethernet CRC formation – “Thus we see that CRC arithmetic is primarily about 
XORing particular values at various shifting offsets.” [19] – with exclusive OR providing the no-
carry add operation. 
 A test run of the mysetq configuration for 33 coin positions and 16 threads using this final hash 
function shows that 1,468,117 initial probes into the forward-path hash table led to 574,405 
subsequent rehashes on collisions, and that 963,981 initial probes into the backward-path hash table 
led to 381,319 subsequent rehashes on collisions, giving the ratio of rehash probes to initial hash 
probes of about 0.39 to 1, an improvement of 1441x. Tests with various coin position sizes show that 
this ratio of rehashes to initial hashes never exceeds 0.5. At most ½ of all probes into a table result in 
one rehash on average. 
 Graph 3 is the counterpart to Graph 2 using this final hash function. Note that Graph 3 starts where 
Graph 2 ends at 33 coin positions. The elapsed time values for the original hash function for 33 



coins in Graph 2 are libsetq : 6.745, libsetmultiq : 6.095, mysetq : 9.701, and mysetmultiq : 11.779. 
The elapsed time values for the final hash function for 33 coins in Graph 3 are libsetq : 1.067, 
libsetmultiq : 0.644, mysetq : 0.693, and mysetmultiq : 0.67. Bidirectional search in Graph 3 does not 
reach the execution times of Graph 2 until searching 39 or 41 coin positions, depending on the hash 
class used, after three or four doublings of the search space size. Furthermore, configuration 
mysetmultiq is the winner for large state spaces at the right end of Graph 3. The nonblocking open 
addressing table in EmbeddedHashSet works better than the write-locking chaining table in 
ConcurrentHashMap, and giving each worker thread its own MultiCircularQueue works better than 
sharing a single queue due to eliminated thread contention for the queue. 
 However, Graphs 4 and 5 reveal that improvements in the final hash function eliminate most 
benefits of hardware multithreading in this application of bidirectional search. In retrospect, the 
performance benefits of multithreading appearing in Graph 1 come about because multiple hardware 
threads are performing independent but mostly useless work in parallel, thanks to the inefficient 
hash function. The final, effective hash function eliminates fat from parallel execution. The threads 
in Graphs 4 and 5 have less work to do, and so a more substantial percentage of their time is spent 
contending for serial resources, primarily for access to dynamic storage allocation for state objects 
and for access to hash table buckets. The multiple queue configurations perform better than their 
single queue counterparts for large coin configurations because they eliminate thread contention for 
access to queues. Library class ConcurrentHashMap in configuration libsetmultiq of Graph 5 
surpasses atomic-based EmbeddedHashSet of mysetmultiq at the 8-thread mark in part because it 
uses locks for contending writes. In cases where there is large amount of thread contention for 
shared resources such as the hash tables of Graph 5, locking is better than atomic synchronization 
because it reduces the amount of noisy, ineffective polling across memory access data paths [5]. 
Indeed, libsetmultiq is the only configuration in Graph 5 that shows monotonic improvement with 
the number of threads after going past its initial spike in inefficiency at 2 threads. 

4.  Porting Java bidirectional search to C++11 
The next step in this investigation entails porting the Java implementation of mysetmultiq to C++11. 
C++11 does not offer counterparts to the library classes of java.util.concurrent such as 
ConcurrentLinkedQueue and ConcurrentHashMap. It does offer C++ utility class wrappers for 
POSIX threads, but more importantly, it adds an explicit memory model for concurrency to the 
language, along with atomic operation classes in the library [20]. The availability of counterparts to 
Java’s and Tesla-Fermi’s atomic operations is the primary benefit of C++11 for this project. 
 Listing 5 gives the essentially line-for-line translation of Listing 2’s open addressing hash table 
traversal function from Java into C++11 using atomic operations. Graphs 6 and 7 illustrate 
performance curves for the Java implementation of mysetmultiq in relation to its C++11 counterpart. 
The latter is as exact a translation from Java to C++11 as is possible. It continues to use dynamic 
storage allocation to allocate state objects. It sizes and allocates arrays in classes 
MultiCircularQueue and EmbeddedHashSet at startup time. Of course, C++11 does not have Java’s 
garbage collector, and the only significant use of the delete operator is in explicit recovery of 
redundant or ill-formed State objects pruned by worker threads, where an ill-formed State is a State 
in which the location of the blank space would move outside of the coin position vector, or 
retrograde motion of a coin would occur. The compiler used is g++ version 4.6.2 with the –O3 
optimization level. 
 Graph 6 shows essentially the same performance for Java and C++11 for a 33-position puzzle, with 
C++11 monotonic performance improvement through 8 threads. Graph 7 shows that 16-threaded 
C++11 outperforms Java for larger puzzle configurations. 
 Graphs 8 and 9 show performance curves for the C++11 mysetmultiq implementation of Graphs 6 
and 7 compared to the new C++11 static configuration. C++11 static represents a major step in 
migrating bidirectional search to Cuda, comprising two substantial changes to C++11 mysetmultiq. 



First, C++11 static uses a Python script that takes the puzzle size and number of threads as input and 
then generates a configuration header file with the various table sizes and state encodings defined as 
C++ constant values. The goal is to provide the compiler with as much static information as possible 
to assist with optimization. Second, the Python script generates a custom definition for class State 
with a different approach to encoding state from the previous Java and C++ configurations. This 
encoding replaces using a byte array of coin information that stores one byte per coin with a highly 
compressed array of 32-bit integers that uses one bit per coin and that stores the blank coin location 
in a separate integer outside the p-bit vector. Though bit vector encodings can lead to longer 
execution times than integer or byte array encodings for some applications, due to the time needed to 
extract application data from the bit vectors, this is not the case for bidirectional search because the 
hash table operations that use State objects do not need to extract application interpretations of the 
integers storing the bit vectors. Once a State object’s constructor builds its bit vector and hashcode, 
hashing can check for bucket collisions using far fewer comparison operations than the byte array 
approach. A 43 position puzzle, for example, requires up to 43 byte equality comparisons in the 
mysetmultiq configuration, while in static configuration it requires only 3 integer comparisons 
consisting of two for the 32-bit integers housing the coin vectors and one for the 16-bit open 
position. Also, the reduction in memory space consumed by State objects is essential for Cuda, both 
because of device memory limits and because of the high overhead of global memory access. The 
static configuration continues to use the C++ new operator to allocate object space and the delete 
operator to recover redundant and ill-formed State objects. Note that operating system paging is not 
a concern in the performance graphs examined in this paper because all benchmarks are constructed 
with puzzle sizes that avoid paging on the lightly loaded benchmark machine. The reduction in time 
resulting from the reduction in size is not a matter of reduction in paging overhead; it is a matter of a 
reduction in the number of storage locations that are written during state construction and compared 
during hash table manipulation. 
 Graph 8 shows almost monotonic improvement with thread count in the C++11 static 
configuration, with improvement decreasing after 4 threads and execution time rising slightly after 
8. Reduction in inter-thread contention within hash table lookups and within the memory allocator 
are the primary causes for improved leverage for multithreading. Graph 9 shows continuing 
improvement in the growth in execution time as a function of the puzzle size. In fact, Graph 9 is the 
first graph that shows an approximate doubling of time with each step increase in puzzle size, with 
no additional overhead, corresponding to the 2(p – 5) / 2 + 6 growth in number of states discussed 
earlier. The main reason that execution time now achieves this doubling rate is because earlier 
algorithms increase time twice as a function of puzzle size, once for the doubling in the number of 
states manipulated, and again for the increase in time needed to manipulate growing byte arrays 
housing the coin data. The move to heavily compressed bit vectors in C++11 static changes State 
object initialization and comparison from an O(p) operation to an O(1) operation. All State classes 
in the 33 through 43-coin positions p of Graph 9 use two 32-bit integers to encode coin state and one 
16-bit integer to record the open position. 

5.  Porting C++11 to Cuda 
5.1  A homogeneous Cuda solution 
The details of NVIDIA’s Tesla-Fermi GPU architecture and the accompanying Cuda tools appear in 
several primary textbooks [16, 21-22], manuals, and numerous conference and journal papers. This 
section repeats only the essentials for this study of bidirectional search. Figure 3 gives a block 
diagram for the 1.15 GHz NVIDIA C2070 GPU card used in the study [21]. The C2070 is a so-
called Compute 2.0 Tesla-Fermi device. Each Streaming Multiprocessor (SM) consists of 32 
hardware threads, comprising a thread warp in NVIDIA parlance. A higher level, software construct 
for thread scheduling is the thread block that can contain more than the 32-threaded warp size, with 
an application running more than 14 thread blocks if so configured. Effective thread block 



scheduling typically requires the configuration of more thread blocks than actual hardware SMs, 
often with more threads-per-block than threads-per-SM. Configuring a high number of thread blocks 
makes it possible for the run-time scheduler to execute one ready block while others are waiting for 
memory transfers. Configuring more than 32 threads per block is useful when multiple threads 
within a block communicate via shared memory. The primary bottleneck in Cuda programs tends to 
be memory access. The first set of GPU benchmark results presented here has the number of thread 
blocks equal to the number of SMs (14) and the number of threads per block equal to the number of 
hardware threads per SM (32). Increasing these parameters did not improve performance for this 
memory-bound application. 
 Threads execute within a warp as a Single Instruction Multiple Data (SIMD) stream, accessing 
parallel data locations, and stalling during the time that conditional execution paths diverge. Distinct 
SMs can execute different portions of a program in parallel, leading to the characterization of the 
GPU as a Single Instruction Multiple Thread (SIMT) device. The SIMT C2070 is a collection of 14 
SIMD devices.  
 This study has examined numerous configurations of the C2070 device and the Cuda code. Graph 
10 gives results for the two most notable configurations, using version 4.1 of the Cuda software 
tools. The limit on device memory size limits the number of states that can be allocated, hence the 
limits of 23 and 33 coin positions in Graph 10. The slower heap version uses the C++ new and 
delete operators for State object allocation and recovery as used in the C++11 benchmarks. The 
faster no heap version allocates the total space for State objects before beginning the search. 
Individual State object allocation obtains storage from a given thread’s pool of State object storage, 
and the search algorithm never deletes a redundant or ill-formed State object. A searching thread 
reuses the storage from any such object in its allocation of the next expanded State object. 
Allocation of fixed-size State objects from a statically allocated pool is faster because it is a simple, 
monotonic storage allocator that moves forward in a pool at each request, it avoids any garbage 
collection or object recovery overhead, it avoids thread contention for a shared memory pool, and it 
conserves space by avoiding maintaining storage management data in regions adjacent to allocated 
memory objects. The benefits are the substantial performance enhancements in speed and available 
puzzle size illustrated in Graph 10 in going from the heap to no heap approach. 
 The homogeneous GPU implementation of Graph 10 does not compare well with the Java and 
C++11 implementations on the 16-threaded Intel processor. Execution times for 33 coins are Cuda 
no heap : 4.92 seconds, C++11 static : 0.35 second, C++ dynamic : 0.68 second, and Java 
mysetmultiq : 0.67 second. So-called GPU occupancy, the ratio of time spent computing within GPU 
threads to available time, is a low 16.7% for test runs of various puzzle sizes. The 33 coin test run 
shows a ratio of thread-divergent program branches to total branches of 5,938,364 / 40,565,579 = 
0.15, which is a fairly good number. Most state expansions are not redundant or ill formed, and most 
hash table lookups complete with a single probe of the table. 
 Spatial and temporal locality of MultiCircularQueue manipulation in the homogeneous Cuda 
implementation is good, making somewhat effective use of the L1 and L2 caches. As Figure 2 
illustrates, pointers to State objects that are adjacent in a circular buffer FIFO reside in adjacent 
memory locations. The Cuda program makes its only use of shared memory among multiple threads 
in a thread block by synchronizing reading and writing of the work queues so that all threads in a 
block read their respective states to expand and write their expanded states in parallel. More 
aggressive use of shared memory to stage states-to-expand in shared memory arrays resulted in 
small performance degradation because of the overhead of copying data from L2 cache to shared 
memory and thence to thread registers. Configuring the available 64K of high-speed intra-SM 
memory as 48K L1 cache and 16K shared memory works better than the alternative of explicitly 
staging data in shared memory. The only worthwhile uses of shared memory in this program are for 
synchronization of parallel initialization of data arrays at startup, and for synchronization of reading 



and writing adjacent entries in a MultiCircularQueue’s array by multiple threads in that queue’s 
thread block. 
 Hash table access is the primary cause of poor GPU performance when compared with the 16-
threaded CPU. Good, non-colliding, non-clustering hash table access exhibits poor spatial locality, 
substantially reducing the benefits of caching. This study avoided using cuckoo hashing that might 
increase spatial locality slightly because of the costs of additional hash table and related memory 
accesses [18]. An investigation in the Java program concerning caching hash table entries for this 
application reveals that this puzzle application of bidirectional search exhibits poor temporal 
locality. Temporally proximate interactions with the hash table show poor utilization of a simulated 
table entry cache in Java. In addition to poor spatial and temporal locality of hash table accesses, 
there are simply a high number of accesses to main memory that do not result in multiple uses of the 
data once it arrives at GPU registers. GPU devices work best with coalesced reads and writes of 
adjacent memory locations and multiple computations using data after those data arrive in registers. 
Interactions with the state queue approach this ideal, but interactions with the hash tables do not. The 
non-local, non-coalesced, high volume nature of hash table-resident data, and the relatively low 
amount of reuse of data in registers, are the primary culprits in the poor performance of Cuda 
relative to multiprocessor C++11 as seen in Graph 10. 
 An additional source of overhead is the fact that use of atomic memory access by highly 
synchronized threads introduces substantial additional stalls in memory interaction because these 
threads collide on SIMD atomic operations [23], choking the memory access data paths. 
MultiCircularQueue avoids this problem by using one thread per thread block that uses atomics to 
stage coalesced reads and writes and by using a distinct queue for each thread block. Unfortunately, 
a hash table has exactly the wrong dynamic, applying parallel atomic accesses by all synchronized 
threads during interaction with the hash table. This observation repeats that made at the end of 
Section 3 concerning the benefits of libsetmultiq’s blocking approach over mysetmultiq’s atomic 
approach for high contentious threads at the right side of Graph 5. Locking performs better than 
atomic access for highly contentious threads. 

5.2  A heterogeneous Cuda / multicore CPU solution 
The final architectural approach of this study uses heterogeneous processing, with a state expansion 
phase taking place on the GPU and with all other work occurring on the 16-threaded Intel CPU. This 
approach attempts to leverage the relative strengths of the two processing architectures at the cost of 
copying state data back and forth between the two processors. 
 Figure 1 provides the basis for understanding the substantially altered approach. Once the search 
algorithm constructs a non-redundant, well-formed State object, there is never a need to delete that 
object and recover its storage. Given the fact that every State object must pass through a queue at 
least one time, it becomes straightforward to convert from a queue of pointers to State objects, to a 
queue of State objects where the circular queue’s array is the State storage arena. In the 
heterogeneous approach there is one MultiCircularQueue object whose array serves as both the 
storage arena and the queue. In terms of Figure 1, this algorithm starts out by constructing a single 
state-pair object containing the initial State and final State objects at location 0 in the queue’s array. 
The multicore CPU (a.k.a. “host”) passes a copy of all unexpanded queue State objects to the GPU. 
The GPU creates an expansion of each State object into four new State objects without checking for 
redundant States, ill-formed States, or solutions, placing the new State objects in the “next ring” of 
Figure 1, i.e., by building State objects at the frontier without conventional memory allocation costs. 
Listing 6 gives GPU kernel function generateStates along with the signature for helper function 
makeState that initializes the storage of a new State object at the frontier. 
 Upon completion of GPU State expansion the program copies the newly constructed frontier back 
to CPU memory where it uses the multiple CPU threads (16 in this study) to execute parallel 
functions workerTaskReduceCompact, workerTaskReduceRecord and workerTaskReduceDetect. 



Each function is multithreaded, and a custom C++ cyclic barrier class constrains all CPU worker 
threads to perform the work of one of these functions in tandem with all other threads. 
 Function workerTaskReduceCompact compacts the frontier returned by the GPU to eliminate ill-
formed States and redundant States whose references were previously placed in a hash table, 
performing its work in parallel. The total frontier is divided into sub-regions, evenly among threads, 
and then each thread compacts its own sub-region by using an algorithm based on the partitioning 
algorithm of quick sort. Moving one pointer up from the start of its sub-region and another down 
from the end, a worker thread copies a valid State object down and over an invalid State object 
whenever the up-moving pointer encounters an invalid State and the down-moving pointer 
encounters a valid State. The thread iterates until the pointers pass each other, and then waits in a 
cyclic barrier until all threads complete this phase of workerTaskReduceCompact. Each thread 
records the final boundary between its valid State objects and the start of undefined, tail-end storage 
in a per-sub-region data structure. Once this initial sub-region compaction is complete, 
workerTaskReduceCompact employs up to half of the active threads to merge valid States from the 
highest regions into the lowest regions in which space is available. This phase of 
workerTaskReduceCompact is inspired by merge sort, since it is basically a merge of “sorted” data, 
where the sort values consist of valid State objects followed by invalid State object storage. It uses 
the highly efficient memcpy library function to copy all appropriate, valid State objects in one call 
per thread. After each phase of coarse-grain merger, workerTaskReduceCompact sets the number of 
threads employed to the number of sub-regions still requiring State objects from above. Upon 
completion workerTaskReduceCompact will have merged all valid State objects into the bottom of 
the frontier; subsequent queue array space is available for new State construction. Like quick sort 
and merge sort, the compaction algorithm is O(n log(n)) on the size of the frontier being compacted, 
with hash table lookup required only during the quick sort-inspired phase. 
 After completion of workerTaskReduceCompact, all worker threads enter function 
workerTaskReduceRecord to record all states in the hash tables. Listing 7 gives the C++ code for 
this function. It is important to note that, since Cuda 4.1 supports g++ 4.4 but not g++ 4.6, and that 
the former does not support C++ atomics, it was necessary to recode class EmbeddedHashSet to use 
POSIX mutex locks instead of atomics [24]. Reversion to locks is beneficial because 
workerTaskReduceCompact consists almost entirely of writing pointers into the two hash tables via 
method EmbeddedHashSet::add of Listing 7. Locks cut down on memory data path contention when 
many threads are accessing shared data paths heavily. In addition to using lock striping to encourage 
parallelism in hash table updates, the heterogeneous algorithm makes no use of hash table locks or 
other table synchronization anywhere outside of workerTaskReduceRecord. Given the fact that all 
hash table updates occur from within workerTaskReduceRecord – the other host algorithms never 
mutate the table – it is possible for workerTaskReduceCompact and workerTaskReduceDetect to 
read the effectively immutable hash tables while making no use of thread synchronization. 
 Finally, all threads enter function workerTaskReduceDetect of Listing 8 to check the frontier for 
solutions to the puzzle by inspecting the hash tables. For this coin puzzle it is possible to compute 
the length of a solution path in advance using the length expression ((p + 1) / 2)2 – 1 given earlier. 
The heterogeneous host program uses this information to defer invoking workerTaskReduceDetect 
until the paths to the frontier satisfy this length constraint. Detection of solutions in the frontier 
terminates the algorithm. 
 Graphs 11 through 13 give the performance curves for various related configurations. C++11 static 
is the earlier, pre-Cuda C++ configuration of Graphs 8 and 9, hybrid initcpu is the heterogeneous 
algorithm just described with parallel initialization of the hash table arrays occurring on the host 
machine, and hybrid initgpu is the heterogeneous algorithm with parallel initialization of the hash 
table arrays occurring on the GPU. CPU g++ with locks is the current algorithm implemented 
entirely on the CPU using the state expansion algorithm from the GPU. Finally, hybrid interleaved is 
a modification of hybrid initgpu that interleaves execution of the CPU and GPU. It expands half of 



the frontier on the GPU while compacting and recording the previous half on the host CPU; 
otherwise the heterogeneous algorithm remains the same. 
 The thread counts refer to CPU threads. Experimentation determined that using 112 thread blocks 
containing 128 threads each yields the best performance for the GPU on this configuration. GPU 
occupancy was a consistent value of 66.7% for both array initialization and State generation, a much 
better value than the 16.7% value for the homogeneous Cuda configuration. Arguably, given the fact 
that the simple multithreaded, highly parallel hash table initialization loop achieves 66.7% 
occupancy, that value is probably a valid limit for what state expansion on the GPU can achieve, 
given the limits on re-use of data in GPU registers. 
 Graph 11 shows the CPU-only g++ configuration just beating CPU+GPU variations for 43 coin 
positions starting at the 4-threaded point. All of the new benchmarks near the bottom of Graph 11 
show monotonic improvement with the addition of threads, as do those benchmarks for 49 coin 
positions in Graph 12. Graphs 11 and 12 also show that for a large search space, when there are only 
1 or 2 threads allocated to perform the host CPU’s portion of the work, using the GPU for state 
expansion results in improved performance over the CPU-only g++ configuration. Graph 13 shows 
the CPU-only g++ curve to be the marginal winner when using 16 multiprocessor host threads, with 
hybrid initcpu coming in second on average. The CPU-only curve is the only one capable of solving 
the 51-position puzzle due to memory limits of the GPU. 
 The results in Graphs 11 and 12 are of interest for comparing single-threaded or dual-threaded 
performance on a 3.6 GHz conventional Intel processor using a large cache size to a 1.15 GHz 
Tesla-Fermi GPU. Using this hybrid configuration of the program to solve the 49-position puzzle, 
which searches through about 268,435,456 states in the 1,580,132,580,471,900-state space, takes the 
following number of seconds in the following single-host-threaded configurations: CPU-only g++: 
57.8; hybrid initcpu: 35.6; hybrid initgpu: 40.8; and hybrid interleaved: 41.5. The numbers for the 
dual-host-threaded configurations are: CPU-only g++: 34.1; hybrid initcpu: 27.6; hybrid initgpu: 
28.7; and hybrid interleaved: 26.6. For the single-threaded host the improvement in using 
heterogeneous CPU+GPU processing over CPU-only processing is (57.8-35.6) / 57.8 = 38.4%. For 
the dual-threaded host the improvement is (34.1-26.6) / 34.1 = 22.0%. A dual-threaded host is a 
common host configuration at the time of this study. Furthermore, the retail price of the Intel-based 
host machine used in these benchmarks was about $7500 when purchased in 2011, while the retail 
price of the NVIDIA 2070 was about $2500. The improvement in going from 2 to 16 threads on the 
CPU-only g++ host configuration is (34.1-12.6) / 34.1 = 63.0%, giving an improvement ratio of 
about 2.9x in using MIMD CPU acceleration instead of SIMT GPU acceleration for a dual-threaded 
host, while incurring a roughly 2.14x increase in monetary cost of $7500 for the 16-threaded 
processor versus $1000 + $2500 for a conventional dual-threaded host + C2070. 
 This study also investigated using page-locked host memory shared between the CPU and the GPU 
in the non-interleaved, hybrid initcpu solution. Compared to 17.1 seconds for 49 positions using 16 
host threads for hybrid initcpu, the page-locked implementation requires 190.6 seconds. Clearly, the 
overhead of fetching and storing individual memory locations of host memory via the host’s PCI bus 
is an order of magnitude worse than the block copy overhead entailed when the GPU uses its own 
memory. 
 Making valid comparisons between CPUs and GPUs is difficult. It is easy enough to find 
benchmark programs that run faster on GPUs than on single-threaded CPUs, especially CPUs with 
relatively slow clocks. In the interest of comparing GPU performance on this problem to a range of 
MIMD processor architectures, Graph 14 gives performance for the Cuda no heap solution of Graph 
10 compared to the Intel CPU-only g++ curve of Graph 13 (CPU g++ w locks) along with that same 
CPU-only algorithm implemented on two other multicore machines. The AMD architecture is a Sun 
x6400 server with a 2.7 GHz, 8 core AMD Opteron 885 processor (16 hardware threads) and 32 GByte 
of memory with 128 Kbyte of L1 cache and 1 MByte of L2 cache per dual-threaded core. Like the Intel 
machine, the AMD is rich in cache. The Sparc architecture is a Sun T5120 server with a 1.2 GHz, 8 



core Sparc T2 processor (x 8 threads per core = 64 threads) with 16 Kbytes of L1 instruction cache 
and 8 Kbytes of L1 data cache per 8-threaded core, and 4 MByte of L2 cache distributed among all 
cores [25]. The Sparc machine is low in L1 and L2 data cache compared to the AMD server. Graph 
14 gives the Sparc performance at 16 threads (the fastest Sparc curve), and increasingly slower 
execution when using 32 and 64 threads. The problem with using more than 16 hardware threads for 
this Sparc configuration is inter-thread cache contention and memory path contention, making it an 
excellent platform for comparison with the GPU. At 16 threads there are 2 hardware threads per core 
contending for limited L1 caches and memory access data paths. There are benchmarks for which 
the Sparc machine outperforms the AMD machine, and there are benchmarks for which the Sparc 
machine can utilize all 64 hardware thread effectively. This bidirectional search algorithm is not one 
of them because the poor memory access locality of the hash tables leads to poor cache utilization 
and cache contention. Homogeneous Cuda beats the Sparc g++ 32 configuration up to the 27 
position puzzle and the Sparc g++ 64 configuration up to the 29 position puzzle. 

6.  Conclusions and future work 
Despite the fact that the GPU offered little to no performance advantage over the available MIMD 
processors for bidirectional search, due to the substantial number of irregular memory accesses, the 
steps of refactoring the original Java algorithm to make it possible to run bidirectional search on a 
GPU has led to a number of important discoveries that help to accelerate any application of 
bidirectional search. 
 First, a designer should prototype an application of bidirectional search in a language with 
adequate library support in order to discover empirical curves in the growth of state space and 
processing time, as well as solution path length. The discovery of these values makes it possible to 
configure constant-size data structures that eliminate the expense of dynamic storage allocation and 
recovery. The prototype need not be multithreaded. 
 Second, referring to Figure 1 and Listings 6 through 8, the most efficient approach in time and 
space utilizes the work queue through which every state must flow as the actual storage arena. 
Figure 1 illustrates monotonically advancing addresses in the queue’s linear address space as 
concentric search frontiers. Bidirectional search allocates copies of the initial and final state objects 
at the beginning of this linear queue (i.e., at the initial frontier), and then performs the following 
steps cyclically. The best performing test runs in the current study perform the follow steps 
sequentially, although it is possible to interleave execution of the generateStates step with the 
remaining steps, operating on each half of the frontier concurrently, as outlined for the hybrid 
interleaved configuration above. Internally, each of the following steps admits to a highly parallel 
implementation. 

1. The generateStates step takes each of the immutable state objects at the highest current frontier 
f and generates b states at the new frontier f+1 where b is the worst-case branching factor. The 
storage location for a new, expanded object lies at a linear offset within the queue’s array. 
There is no dynamic storage allocation. Expansion takes the form of initialization of state 
object fields using storage in the pre-allocated queue array. Multiple threads can expand 
multiple states, indexed using the unique thread number, without synchronization. This step 
corresponds to Listing 6. 

2. The reduceCompact step eliminates ill-formed states, which are states that violate state-specific 
constraints and heuristics, as well as redundant states representing cycles in search paths, using 
a parallel compaction algorithm that copies well-formed states occurring later in the queue 
array down to the locations of the ill-formed states. This step first divides frontier f+1 evenly 
among the worker threads. Each worker thread compacts its own sub-region using an algorithm 
similar to quick sort’s partitioning algorithm, where all well-formed, non-redundant states must 
precede all ill-formed or redundant states in the sort of the sub-region. Detection of redundant 
states requires concurrent reading of the hash sets of previously encountered states in each 



direction, but because these hash sets are immutable during this phase, they have no need for 
synchronized access. Once all worker threads have partitioned their sub-regions, 
reduceCompact cyclically merges well-formed states from higher sub-regions into lower sub-
regions by copying well-formed states over ill-formed states via the efficient memcpy library 
function. Each merge phase can utilize as many worker threads as there are pairs of sub-regions 
to be merged. At the point that there are no more pairs of sub-regions to merge, frontier f+1 has 
been compacted. 

3. The reduceRecord step records references for all states in frontier f+1 into the appropriate 
forward or backward hash set. Multiple threads can record all references from frontier f+1 in 
parallel, advancing through the frontier using address sequencing that maximizes cache 
utilization for reading the queue array. Given the fact that all threads are writing to the hash 
sets in a tight loop, there is a somewhat high probability of thread contention, leading to a 
preference for hashing using lock stripes over hashing using atomic stripes. This is the only 
step requiring synchronized access to hash table buckets. This step corresponds to Listing 7. 

4. The reduceDetect step inspects all states in frontier f+1 for membership in the hash set coming 
from the opposite side of the search space. For each such member detected it recovers, records 
and reports a solution path. As in reduceCompact, because the hash sets are immutable during 
this phase, they have no need for synchronized access. At the end of reduceDetect, if it has 
detected any solutions, then this algorithm terminates. In applications where it is possible to 
determine an a priori solution path length as a function of search problem parameters, as it is 
for the Penny-Dime problem, it is possible to avoid the overhead of executing reduceDetect 
until the search path length f+1 * 2 reaches the required value. 

 These guidelines apply to any application of bidirectional search, and constitute the primary 
outcome of this study. They represent a map / partial reduce approach in the functional 
programming sense [26], where generateStates maps frontier f to frontier f+1 and the other steps 
partially reduce f+1. 
 Replacing the hash table with another data structure that implements a set interface such as a sorted 
tree or a skip list [27] has little promise for GPUs, since traversing linked structures entails multiple, 
non-coalesced memory accesses. Designing a hash function that increases spatial locality of 
application-proximate keys in the search space may be possible, but the magnitude of the search 
problem makes any effective solution on a current GPU architecture doubtful. For a problem with 
branching factor b = 2, half of the explored states reside in the frontier being checked for redundant 
and solution states. 
 For bidirectional search problems with substantially more computational overhead in the 
generateStates step than that of Penny-Dime, the hybrid interleaved approach still holds promise of 
leveraging the GPU. One problem with this approach for Penny-Dime is that the generateStates step 
is too cheap, and so the cost of transporting state to the GPU outweighs the benefit. For problems 
with state expansion that grows in complexity without a commensurate growth in memory size, and 
where states expansion uses a GPU-friendly model of memory interaction, the hybrid interleaved 
approach may be worth investigating. 
 The next step in the current study is to investigate the viability of porting search algorithms without 
the hash set requirements of bidirectional search to heterogeneous MIMD and GPU parallel 
processing architectures. 
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Figure 1: Bidirectional Search as a Maze 

 
 
 

 



enqueue initial state into work queue 
enqueue final state into work queue 
set forwardStatesSet to the set of {initial state} 
set backwardStatesSet to the set of {final state} 
set setOfSolutions to empty set {} 
set isdone flag to false 
start parallel threads executing the following code: 
while not isdone 
  dequeue a state-to-expand from front of work queue 
  for each single-step expansion of state-to-expand 
   if expansion is in StatesSet from opposing side 
    if 1st solution or cost equals solutions’ cost 
     add expansion’s path to setOfSolutions 
    else (cost is greater) 
     set isdone flag to true 
   else if expansion is in StatesSet from this side 
    // a cycle or converging DAG path detected 
    do not use this expansion 
   else 
    add expansion to StatesSet from this side 
    enqueue expansion in work queue 
 

Listing 1: Parallel,  minimum-blocking dataflow algorithm 

 
 



 
 

Graph 1: Execution time for 4 classes of queues and sets 

 



 
 
 

Figure 2: Circular buffer implementation of a FIFO using atomic data 

 
 



for (int tries = 0 ; tries < limit ; tries++) { 
            E v ; 
            if (isinsert && table.compareAndSet(bucket, null, e)) { 
                 v = e ; 
                 result[1] = 1 ; 
                 numElements.incrementAndGet(); 
            } else { 
                 v = table.get(bucket); 
            } 
            if (v == null || v.equals(e)) { 
                 result[0] = bucket ; 
                 return result ; 
            } else { 
                 bucket = (bucket + prm) & bitmask ; 
            } 
        } 
 
Listing 2: The core of the thread-safe, non-blocking hash table search function 



 
 

Graph 2: Execution time for 4 classes of queues and sets 
 



            int tmphash = initOpen ^ initVector.length ; 
            for (int i = 0 ; i < initVector.length ; i++) { 
                // Since all states will have the same number of pennies, 
                // dimes and a single space, add some weight by location 
                tmphash = tmphash ^ (initVector[i] * i); 
            } 
            hashcode = tmphash ; 
 

Listing 3: The initial,  naive hash function for a state object 
 



            int tmphash = initOpen ; 
            for (int i = 0 ; i < initVector.length ; i++) { 
                if (initVector[i] == DIME) { 
                    tmphash = tmphash ^ (tmphash << 6) ^ i ; 
                } else if (initVector[i] == EMPTY) { 
                    tmphash = tmphash ^ (tmphash << 6) ^ (i * i); 
                } 
            } 
            hashcode = tmphash ; 
 

Listing 4: The final, effective hash function for a state object 
 



 
 

Graph 3: Execution time using the final hash function 



 
 

Graph 4: Execution time for 29 positions using the final hash function 



 
 

Graph 5: Execution time for 33 positions using the final hash function 
 
 



        for (int tries = 0 ; tries < limit ; tries++) { 
            E * v ; 
            E * null = NULL ; 
            // compare_exchange_strong can overwrite null 
            if (isinsert && table[bucket].compare_exchange_strong(null, e)) { 
                v = e ; 
                result[1] = 1 ; 
                numElements++ ; 
            } else { 
                v = table[bucket].load(); 
            } 
            if (v == NULL || v->equals(e)) { 
                result[0] = bucket ; 
                return ; 
            } else { 
                bucket = (bucket + prm) & bitmask ; 
            } 
        } 
 

Listing 5: The thread-safe, non-blocking hash table search function in C++11 



 
 

Graph 6: Execution time for 33 positions in Java and C++11 



 
 

Graph 7: Execution time for 16 threads in Java and C++11 
 



 
 

Graph 8: Execution time for 43 positions using two C++11 configurations 



 
 

Graph 9: Execution time for 16 threads using two C++11 configurations 



 
 

Figure 3: Tesla-Fermi Compute 2.0 in the NVIDIA C2070 GPU 



 
 
 

Graph 10: Execution time for two Tesla-Fermi Cuda configurations 



// This is the CUDA kernel that performs State expansion. 
// The host places the pairsToRead at the beginning of queueArray, and 
// the pairsToWrite are just beyond the pairs to read. Each CUDA thread 
// expands 1 pair-to-read into up to 4 pairs-to-write. 
__global__ void generateStates(unsigned long pairsToRead, 
        unsigned long startingStateOffset) { 
    uint32_t myix = blockIdx.x * THREADSPERBLOCK + threadIdx.x ; 
    while (myix < pairsToRead) { 
        uint32_t stateix = ((&(queueArray[myix].fwdState)) 
            - ((State *) queueArray)) + startingStateOffset ; 
        StatePair *myout = queueArray + pairsToRead 
            + (myix * STATE_EXPANSION_PER_STEP); 
        for (int transform = 0 ; transform < STATE_EXPANSION_PER_STEP 
                ; transform++) { 
            makeState(&(queueArray[myix].fwdState), stateix, transform, 
                &(myout->fwdState)); 
            makeState(&(queueArray[myix].bkdState), stateix+1, transform, 
                &(myout->bkdState)); 
            myout++ ; 
        } 
        myix += THREADSTOTAL ; 
    } 
} 
 
__device__ void makeState(State *predecessor, uint32_t predecessorIndex, 
        int transform, State *storage) /* This function initializes the State object. */ 
 

Listing 6: Cuda state expansion for the heterogeneous CPU / GPU approach 



static void workerTaskReduceRecord(int threadnum, int threadcount) { 
    // Record by stripes to maximize cache utility. 
    // This is the only phase in which the hash table uses locks. 
    if (threadnum < sizeOfReduction) { 
        int32_t riser = startOfReduction + threadnum ; 
        while (riser < topOfStatePairs){ 
            fwdStatesGlobal->add(&(hoststate[riser].fwdState)); 
            bkdStatesGlobal->add(&(hoststate[riser].bkdState)); 
            riser += threadcount ; 
        } 
    } 
    workerCyclicBarrier(threadnum, threadcount, NULL); 
} 
 

Listing 7: Heterogeneous hash table updates on the CPU using GPU-like code 



static __host__ bool isSolution(State *fwds, State *bkds) ; 
static void workerTaskReduceDetect(int threadnum, int threadcount) { 
    // Inspect by stripes to maximize cache utility. 
    if (threadnum < sizeOfReduction) { 
        int32_t riser = startOfReduction + threadnum ; 
        while (riser < topOfStatePairs) { 
            if (hoststate[riser].fwdState.getOpen() != -1) { 
                isSolution(&(hoststate[riser].fwdState), 
                    &(hoststate[riser].bkdState)) ; 
            } 
            riser += threadcount ; 
        } 
    } 
    workerCyclicBarrier(threadnum, threadcount, NULL); 
} 
 

Listing 8: Heterogeneous solution detection on the CPU using GPU-like code 



 
 

Graph 11: Execution time for 43 positions using CPU / GPU configurations 



 
 

Graph 12: Execution time for 49 positions using CPU / GPU configurations 



 
 

Graph 13: Execution time for 16 CPU threads using CPU / GPU configurations 



 
 

Graph 14: Execution time for Cuda and CPUs on various architectures 
 


