
Minimum-Blocking Parallel Bidirectional Search in
Java, C++11 and Tesla-Fermi Cuda

Dale E. Parson
Kutztown University of PA

15200 Kutztown Road
Kutztown, PA 19530-0730

Abstract
The present work investigates using a minimum-blocking dataflow software architecture as the basis
for improving performance of parallel bidirectional search on multiple-instruction multiple-data
(MIMD) and single-instruction multiple-thread (SIMT) multiprocessors. The approach represents
individual states as minimum-size, immutable objects. It uses work queues to distribute states-for-
expansion among worker threads, and it uses sets to keep track of states previously explored in each
direction. The Java design uses a non-blocking queue class and a minimum-blocking set class from
the Java library, while the C++11 design uses custom non-blocking classes built atop atomic
operations recently added to the language. The SIMT, C++ / Cuda design takes a heterogeneous map
/ reduce approach that expands states in parallel on a Tesla-Fermi graphical processing unit (GPU),
and then eliminates dead states, cycles, and detects solutions on a multicore MIMD host processor.
Rather than step worker threads through state transitions using blocking synchronization, these
designs flow states to be expanded to worker threads in the order required by bidirectional search.
Topics include engineering steps taken in migrating search algorithm design from Java through
C++11 to Cuda, along with examination of the impact of each step on performance.

Keywords
bidirectional search, C++11, Cuda, Java, multiprocessing, parallel programming

1. Introduction and related work
Bidirectional search is a classic approach to solving search space problems when both the initial and
final states of the search are known in advance [1]. It searches for paths that connect these two
states, typically searching for minimum-length paths. In problems with exponential growth of the
search space size as a function of search path length, bidirectional search reduces the number of
states inspected over unidirectional approaches by integrating the results of two shorter paths that
grow simultaneously from the initial and final states.
 Bidirectional search is an interesting algorithm for adaptation to parallel programming because it
aims at improving run-time performance over simpler search algorithms such as depth-first or
breadth-first search, and because it lends itself to parallel implementation. Figure 1 is a schematic
view of bidirectional search as exploration of a maze in search of the shortest path, given knowledge
of both the entrance and exit locations. Regardless of the concrete problem being solved,
bidirectional search always requires knowledge of the starting and ending states of the search. It
often utilizes problem-specific heuristics to prune the search space, but it is not required to do so.
 The fundamental point of bidirectional search is to limit the exponential growth in number of states
explored in a single direction by exploring two shorter paths, one from each direction, and then
detecting states in which those opposing paths meet. The outermost set of states currently being
explored in either direction constitutes that direction’s frontier. A single-threaded bidirectional
search uses a first-in first-out (FIFO) queue of states to expand as a work queue. The algorithm first
enqueues the initial state and final state in the work queue, after which it iteratively removes a state,

computes its single-step expansions, checks for cycles (and converging DAG paths in some
applications) within the states of its originating direction, and checks for collisions with states
coming from the opposite direction. Cycle / converging paths and collision checking require storing
explored states in a set that is keyed on location in the space + search direction, or two sets that are
keyed on location only. Detection of opposing-path collisions uncovers shortest-path solutions to the
problems. In the absence of cycles / converging paths and solutions, the algorithm enqueues one or
more single-step expansions and repeats these steps until it locates a solution.
 The worst case time, space complexity for unidirectional breadth-first search is O(bd+1), where
base b is the number of alterative branches (branching factor) in the search path that can be taken at
any step, and exponent d is the depth (or equivalently length) of the path. When b==3, for example,
an un-pruned frontier contains 3 possible states after 1 step, 9 possible states after 2 steps, and so on,
generalizing to bd states at the frontier, although some may be eliminated through detection of
cycles, converging DAG paths, or via application-specific heuristics. The total states explored
leading up to the frontier + the frontier itself grows at the rate O(bd+1).
 Bidirectional breadth-first search, in contrast, grows at the much lower rate O(bd/2). Each of the
two search directions in bidirectional search grows to only half the length of the corresponding
unidirectional search, thereby cutting down on the massive exponential growth in explored states
that comes with the relative doubling of length in unidirectional search.
 Recent work reported on integrating parallel processing with bidirectional search focuses on
applying parallel implementation of heuristic strategies to prune the search space [2-4]. Using
application-oriented heuristics to radically reduce the number of states explored is the primary
means for accelerating the basic bidirectional algorithm. Observing the incremental state expansion
of a search domain often uncovers useful heuristics.
 The present work is an outgrowth of curriculum development for a senior and graduate level course
in MIMD parallel programming with Java [5, 6]. This work extends that by exploring the software
engineering steps taken in migrating parallel bidirectional search from Java to C++11 and Cuda and
by examining the performance results.

2. Minimum-Blocking Approach in Java
The initial, Java-based solution to parallel bidirectional search uses the algorithm of Listing 1, which
implements a dataflow architecture that routes states-to-be-expanded to worker threads. Each
immutable state object contains its internal state fields and an immutable reference to its predecessor
in its search path.
 Insertion of a state into the work queue and retrieval from the work queue do not block in this
algorithm. The viability of non-blocking retrieval depends on the fact that exponential growth of the
search space ensures that most dequeue operations will receive a state-to-expand from the work
queue. It is only at the beginning of the search that some threads do not initially find states-to-
expand via the non-blocking dequeue operation. Those threads resort to a polling loop, trying the
queue repeatedly until they receive a state to expand. Idle polling consumes processors only until
the work queue begins to grow at an exponential rate. The Java implementation uses the
ConcurrentLinkedQueue from the java.util.concurrent library package as the work queue. The
documentation for that class states that, “This implementation employs an efficient ‘wait-free’
algorithm.” [7, 8]
 The forwardStatesSet and backwardStatesSet of Listing 1 are objects of class ConcurrentHashMap
of java.util.concurrent. There is no comparable Set class per se, but the keys of a Map can serve as
elements of a Set. The documentation for this class states, “However, even though all operations are
thread-safe, retrieval operations do not entail locking.” Write locks are distributed across a number
of stripes, where a stripe is a subset of the buckets in the hash table [9]. When two writers do not
collide on the same stripe, they do not impede each other via blocking access to a shared lock.

Application programmers can adjust the number of stripes, trading increased parallelism against the
memory cost of maintaining additional lock stripes.
 A change of the frontier direction in the algorithm of Listing 1 does not block until other threads
have completed expansion of the current direction, forward or backward. An earlier design used the
CyclicBarrier class from java.util.concurrent to restrict worker threads to expanding states in one
direction at a time, but this state machine-oriented restriction caused unnecessary coarse-grain
synchronization delays between threads [6]. The dataflow algorithm of Listing 1 interleaves worker
thread expansion of forward and backward states. With a high lookup-to-insertion ratio for StatesSet
members – all insertions are preceded by lookups to detect cycles and solutions – locking is minimal
and configurable via the StatesSet’s stripes constructor parameter.
 Dispensing with coarse-grain synchronization of the two-phase state machine is possible because
states flow through the work queue in approximately the correct order. Forward states-to-expand
alternate with reverse states-to-expand, partitioned by frontier-being-expanded for the most part.
 This temporal sequencing of wave fronts is stochastic, not deterministic. A thread that finds most
(but not all) of its state expansions to be dead ends (cycles or converging DAG paths) for a series of
dequeue operations places frontier states onto the work queue quickly; some worker threads could be
two phases ahead of other threads, expanding a path of length L+1 for a given direction while some
threads are expanding paths of length L for that same direction. There is no particular problem in
occasionally “getting ahead,” as implied by the overlapping frontiers of Figure 1. A thread that has
gotten ahead on one turn may find an opposing path one level deeper into the opposing side’s search
space, but the discovered path is still a solution path. The algorithm stores only the set of minimum-
length solution paths in the set of solutions. Normally, by the time a thread has reached level N+1 in
the search from its dequeued state-to-expand’s origin, all other threads have dequeued all level N
states from the work queue, and they will complete expansion of those N-level states before
checking the isdone flag set by the first solution’s discovery. Some of those N level expansions may
be redundant with the N+1 level solution from the thread that “got ahead.” The algorithm discards
such redundant solutions.
 The algorithm of Listing 1 may make it possible for some advanced states-to-expand to be multiple
frontier levels ahead of other states being expanded in the same direction. If the thread that is
expanding a level N+2 (or higher) state sets the isdone flag while other level N states are being
expanded in the same direction, then some solutions could be missed in an exhaustive search for all
distinct minimum-length paths. The fix is to discard a state-to-expand after a solution has been
found, if the state-to-expand has a path length greater than the integer ceiling of ½ of the known
solution’s length, setting the isdone flag at that point. The length of the first known solution helps to
prune state expansions. At the point that the work queue becomes empty after the isdone flag is set
to true, worker threads can terminate their work. Of course, a thread may detect this condition and
terminate just before another thread enqueues a state-to-expand, but at that point processing is
converging on the last of the solutions, and the thread that enqueued the state-to-expand is
guaranteed to be available to dequeue that state-to-expand, if no other thread gets there first. States-
to-expand in possible solution paths will not be left in the work queue by all terminating threads, and
detection of the isdone flag in combination with an empty work queue indicates convergence on the
last of the solution paths.

3. Shortest path performance for Java1
3.1 The basic Java implementation
Performance measurement uses a representative puzzle-solving application of bidirectional search,
that of finding the solution of the so-called “Penny-Dime puzzle,” where there is an arrangement of
some number N of pennies P, followed by one blank space, followed the same number N of dimes
D. The goal is to find the series of moves that will reverse a sequence such as PPPPPP_DDDDDD to
the sequence DDDDDD_PPPPPP. Legal moves consist of moving a coin one location into the space,
or jumping a coin over a single neighbor (as in checkers) to the space. Heuristics such as avoiding
retrograde moves can accelerate the search, but the overall form of the algorithm is typical for
bidirectional search. Utilizing application-specific patterns of coin movement can reduce the time
complexity of the search to a polynomial-time problem, but the benchmark results reported here do
not take this pattern-directed approach. Each state expansion consists of one of up to four legal
moves, while avoiding retrograde moves consisting of movement of a penny P to the left or a dime
D to the right. The implementation measured here actually expands a state pair at each expansion
step, where a state pair consists of a forward state expansion and its mirror-symmetric backward
state expansion. Expanding a mirror-symmetric state pair in one step cuts down on redundant
computational cost. Bidirectional search problems that exhibit mirror symmetries in forward and
backward expansion paths can utilize this improvement, while others cannot.
 The total number of possible states for a puzzle of an odd number p positions, where one position
is blank, (p-1)/2 positions hold pennies and the same number of positions hold dimes, is

p * ((p – 1)! / (((p – 1) / 2)! * ((p – 1) / 2)!)) = p * ((p – 1)! / (((p – 1) / 2)!2))
 The sub-equation ((p – 1)! / (((p – 1) / 2)! * ((p – 1) / 2)!)) is simply the equation for the
combination of n things taken r at a time = n! / ((n – r)! * r!) [10], with n = p – 1 (the number of
non-blank locations) and r = (p – 1) / 2 (the number of locations occupied by a coin of one type).
Since n – r = r for this puzzle – there is an equal number of pennies and dimes – this sub-equation
reduces to ((p – 1)! / (((p – 1) / 2)!2)). The leading “p *” multiplier accounts for all possible
locations of the blank. For example, a 3-position puzzle has 6 states, a 5-position puzzle has 30
states, a 7-position puzzle has 140 states, and 9-position puzzle has 630 states. Benchmarks
considered in this report extend to 49-position puzzles with 1,580,132,580,471,900 possible states
and 51-position puzzle with 6,446,940,928,325,352 possible states.
 Bidirectional search is involved in exploring only the states within the intersecting search cones of
Figure 1 in order to find solution paths. In principle the branching factor b of the search time and
space complexity O(bd/2) as previously discussed is b = 4, which is the largest number of legal
expansions of a given state using the rules of the puzzle. Eliminating “undo moves” that cancel out
the most recent state expansion leading to the current state being expanded reduces the branching
factor for the puzzle to b = 3 for all but the first moves. Eliminating all retrograde moves including
“undo moves” and eliminating all cycles for a given direction reduces the effective branching factor
further. Examination of empirical growth in the number of states for this puzzle uncovers a data-
fitting growth formula of 2(p – 5) / 2 + 6 for p positions, with solution path length d = ((p + 1) / 2)2 - 1,
where d+1 gives the total number of states along a solution path that include the start and end states.
Thus, while the solution path length grows with the square of the puzzle size p, pruned search yields
a branching factor b = 2 with an exponent that grows as a linear function of puzzle size p.
 The machine used for benchmarks is a 3.6 GHz, 16-threaded Intel PC running a 64-bit Linux
kernel and Java Version 1.6.0_22. It houses two Intel Xeon x5687 processor packages with four
dual-threaded cores in each, yielding 8 cores x 2 threads = 16 threads of execution. Each of the two

1 All benchmark code reported in this paper is available under the Intel Academic Community

Educational Exchange, http://software.intel.com/en-us/courseware/, credited to the author, entitled
“Parallel Programming in Java,” beginning in autumn 2012.

packages has 12 Mbyte of L2 cache. The individual states of the Penny-Dime puzzle are small,
although references to a large number of these small state objects reside in the work queue(s) and
sets of the algorithm, with roughly half in the queue(s) and half in the sets for b = 2. All benchmarks
use variations of the minimal-blocking algorithm of Listing 1, without the bottleneck created by the
blocking CyclicBarrier of Listing 1 given in an earlier publication [6]. Each implementation of the
benchmark searches using 16 software threads unless otherwise noted.
 Graph 1 shows execution time in real seconds as a function of the number of worker threads
employed, seen on the logarithmic X axis, for four different container class combinations on a
puzzle with 29 positions (14 pennies, 14 dimes and 1 blank yielding 262,144 states). The fastest,
labeled libsetq, uses Java’s ConcurrentLinkedQueue and ConcurrentHashSet as previously outlined.
A second combination, labeled libsetmultiq, uses multiple ConcurrentLinkedQueue objects, one per
worker thread. Each worker thread reads only its own work queue of states-to-expand. All threads
use a single, shared atomic counter to determine the next queue to write in circular, round-robin
order. This multiple queue approach eliminates thread contention for reading a work queue and it
minimizes the probability of write contention by spacing consecutive writes to a given queue as far
apart as possible in relation to the other queues. Using multiple queues yields substantial
performance improvement for some applications, e.g., a 2x improvement as reported in [6].
However, Graph 1 shows that the Penny-Dime problem does not benefit from this approach. The
libsetmultiq performance curve is marginally worse than the basic libsetq approach, converging with
the latter at 16 threads. This lack of improvement illustrates the fact that contention for access to the
queue is not a bottleneck in this application, while the cost of accessing multiple queues and using
an atomic, round-robin write index has a small detrimental effect.
 The two remaining curves of Graph 1, labeled mysetq and mysetmultiq, show results for using the
corresponding single-queue and multiple-queue approaches with custom, lock-free queue and set
container classes, named MultiCircularQueue and EmbeddedHashSet, built atop Java atomic
reference variables [5]. Building and using these custom classes is primarily a step in prototyping
their implementation and application for later C++11 and Cuda rewrites of bidirectional search,
because these C++ platforms do not have counterparts of Java’s ConcurrentLinkedQueue and
ConcurrentHashMap classes.
 MultiCircularQueue takes the basic circular buffer approach to implementing a FIFO [11] of
references to state objects while using atomic operations available in Java as well as C++11 and
Cuda GPU 2.0 devices to serialize thread access separately at each end of the a queue. Figure 2
illustrates the approach. To enqueue a reference to a state object, a thread atomically compares-and-
sets an object reference in place of a null reference at the rear of the queue, where rear, front and
size are atomic integer indices. In the case where the preceding atomic reference was in fact null, the
thread essentially locks the queue for insertion until it updates the size variable, and then the rear
variable to the next null location in the queue, unlocking the queue. In the case where a thread
unsuccessfully attempts to atomically compare-and-set a non-null reference because the queue is
currently locked for enqueuing, it either spins until the writing thread releases the spin lock for the
single-queue case, or it goes onto the next queue for the multiple-queue case. Dequeuing is similar,
using compare-and-set to conditionally retrieve a non-null value, and replace it with a null value,
thereby obtaining the front spin lock. After completion the reading thread updates size and then front
to index a non-null location, thereby releasing the spin lock. If the queue is empty, the reading thread
returns a null reference, similar to using ConcurrentLinkedQueue’s poll method.
 Serialization of thread access within EmbeddedHashSet is simpler. Instead of taking the now-
common approach of using a chaining hash table, where each bucket in the hash table stores a
pointer to a list of elements that happen to collide on the hash function, the present work uses an
open addressing hash table that follows a hashing collision by rehashing to a different location in
the table, repeatedly rehashing if necessary until finding either the search element or a null reference
[12]. EmbeddedHashSet stores either a null value or a reference to a valid state object as an atomic

value at each location in the table. Key-based retrieval, where the key in this search application is a
search state, uses atomic retrieval until finding either the desired state or a null reference, signifying
end of search. Key-based insertion uses an atomic compare-and-set operation to replace a null value
in the table with a reference to the inserted state value. When a hash bucket’s reference is non-null,
either it is the searched-for key, in which case the search has terminated by finding a previously
stored state object reference, or it is not, in which case search proceeds via rehashing. Listing 2 gives
the concise Java code for the core of the table search function, where variable e of generic reference
class E is the subject of search, table is the open address hash table of reference type E, and result is
a two-element integer array used to return the bucket number in element 0 and the search status in
element 1 to the calling add, contains or get method.
 Well-known problems with efficiency of deletion of elements from an open addressing hash table
[13] do not affect the present approach to bidirectional search because the algorithm of Listing 1
never deletes a state reference from a hash table. EmbeddedHashSet supports only insertion and
lookup. Open addressing avoids dynamic memory management overhead and synchronization
bottlenecks when the size of the table can be constrained in advance, as well as avoiding multiple
memory accesses entailed by traversal of table + list data structures. These properties make it a
reasonable fit for embedded processors with poor dynamic memory management behavior such as
network processors [14, 15] and graphical processing units [16]. The rehashing approach of Listing
2 is to add an odd prime number prm to a colliding bucket number, where hashing computes an
index into an array of odd prime numbers using a second hash function that differs from the primary
hash function, and a prime number prm retrieved from the table permutes an N-sized table in at
most N steps when N is a power of two. Using two distinct hash functions for primary hashing
versus rehashing along with the pseudo-random sequencing of key-selected primes for permuting the
table after collisions avoids common clustering problems in the table associated with colliding states
/ keys [11-13], as long as the hash functions are good. Ensuring a good hash function is a matter for
the next section.
 Open addressing for bidirectional search is preferable to cuckoo hashing adapted to graphical
processors because of design simplicity and fewer memory accesses when using a good hash
function [17]. Alcantara’s 2011 Ph.D. dissertation [18] investigates an atomic approach to open
addressing similar to the one used here [15], listing three problems with open addressing as
compared with the adapted cuckoo approach. First, “Performance drops significantly for compact
tables,” when the density (ratio of occupied buckets to total buckets) exceeds 67%. The present work
sizes tables so that they never exceed 50% density, trading memory size and spatial locality in order
to minimize the number of memory accesses for a good hash function. Second, “High variability in
probe sequence lengths” can lead to performance problems. Analysis of the Penny-Dime hashing
function summarized below has essentially eliminated this variability. Finally, “Removing items
from the table is not straightforward.” As noted above, bidirectional search as given in Listing 1
does not remove state object references from the forward-path and backward-path hash sets after
insertion. Bidirectional search as given in Listing 1 is not specific to the Penny-Dime puzzle. It
works for any application of bidirectional search. Element removal is unnecessary.
 To complete the discussion of Graph 1, mysetq and mysetmultiq that use custom classes
MultiCircularQueue and EmbeddedHashSet, both based on non-blocking atomic operations, perform
marginally worse here than libsetq and libsetmultiq based on Java’s ConcurrentLinkedQueue and
ConcurrentHashmap. Graph 2 measures the same four programs by varying the number of coin
positions p from 25 through 33 while keeping the number of threads fixed at 16. The relative
effectiveness of the approaches is similar, with the cost of multiple queues outweighing the benefits,
and with time growing at somewhat more than the doubling rate in the number of states per coin-
slot-pair given by 2(p – 5) / 2 + 6. The fixed terms in execution time as well as inter-thread contention
for the memory manager and for hash table access account for some of the steeper growth rate in
time. A benchmark examined below uncovers an additional source of overhead in this growth rate.

 The marginal differences in performance of configurations in Graphs 1 and 2 is less important than
the fact that MultiCircularQueue and EmbeddedHashSet represent demonstrably viable designs for
C++11, which offers no thread-safe queue and hash set library classes, as well as for Cuda, which
offers support for atomic operations in newer devices but not for lock-based thread-safe queues and
hash sets.

3.2 The effects of a better application hash function
Given the promising look of performance in Graphs 1 and 2, the next step in this process is to
attempt to improve the hash function for state objects. Listing 3 gives the initial, naïve hash function
for a state object stored in the hash table, where initOpen is the position of the blank coin slot. The
goal when coding this initial version was to get something working. This hash function computes a
32-bit integer hashcode value and stores it in an immutable field in each application state object. The
library and custom hash table classes fold the upper bits that are outside the range of their table
indices into the lower bits using the exclusive-or operator, and then use the resulting integer as a
bucket number.
 The function of Listing 3 uses the integer encoding of each penny, dime, and the blank space
stored in the byte-valued initVector array as a multiplier that is weighted by its position in this array.
The State class stores coins and the blank as integers in an array, one position per element. The
intent was to use the distinct integer value of each coin type and blank, coupled with the unique
weight of its position, to create a hash function capable of distinguishing among state configurations.
There are two obvious problems with this hash function at the outset. First, no account is made for
the likelihood that some bits contributed by the positioned coins will overflow the 32 bits of the hash
code. Second, the encodings for a penny and a dime do not permute the space of potential encodings,
making this function likely to result in clustering of hash values.
 Instrumenting the code for class EmbeddedHashSet reveals the glaring deficiency of this hash
function. A test run of the mysetq configuration for 33 coin positions and 16 threads, corresponding
to the rightmost measurement of Graph 2, shows that 1,463,731 initial probes into the 474,204
element forward-path hash table led to 821,859,095 subsequent rehashes on collisions, and that
960,974 initial probes into the 474,204 element backward-path hash table led to 541,068,155
subsequent rehashes on collisions, giving the ratio of rehash probes to initial hash probes of about
562 to 1.
 Listing 4 shows the final hashing function used after analysis and some experimentation. This
function exploits the fact that the positions of the dimes and the blank space, or equivalently the
pennies and the blank space, fully determine the state. That is the reason that this hash function
inspects only dimes and the blank position. Its use of the “<< 6” operation ensures that it distributes
cumulative coin bits across the hashcode, while its simultaneous use of the unshifted cumulative
coin bits ensures that it loses no bits of information. It encodes the blank, open position differently in
order to differentiate it from a coin. This hash function is loosely based on polynomial arithmetic as
implemented for Ethernet CRC formation – “Thus we see that CRC arithmetic is primarily about
XORing particular values at various shifting offsets.” [19] – with exclusive OR providing the no-
carry add operation.
 A test run of the mysetq configuration for 33 coin positions and 16 threads using this final hash
function shows that 1,468,117 initial probes into the forward-path hash table led to 574,405
subsequent rehashes on collisions, and that 963,981 initial probes into the backward-path hash table
led to 381,319 subsequent rehashes on collisions, giving the ratio of rehash probes to initial hash
probes of about 0.39 to 1, an improvement of 1441x. Tests with various coin position sizes show that
this ratio of rehashes to initial hashes never exceeds 0.5. At most ½ of all probes into a table result in
one rehash on average.
 Graph 3 is the counterpart to Graph 2 using this final hash function. Note that Graph 3 starts where
Graph 2 ends at 33 coin positions. The elapsed time values for the original hash function for 33

coins in Graph 2 are libsetq : 6.745, libsetmultiq : 6.095, mysetq : 9.701, and mysetmultiq : 11.779.
The elapsed time values for the final hash function for 33 coins in Graph 3 are libsetq : 1.067,
libsetmultiq : 0.644, mysetq : 0.693, and mysetmultiq : 0.67. Bidirectional search in Graph 3 does not
reach the execution times of Graph 2 until searching 39 or 41 coin positions, depending on the hash
class used, after three or four doublings of the search space size. Furthermore, configuration
mysetmultiq is the winner for large state spaces at the right end of Graph 3. The nonblocking open
addressing table in EmbeddedHashSet works better than the write-locking chaining table in
ConcurrentHashMap, and giving each worker thread its own MultiCircularQueue works better than
sharing a single queue due to eliminated thread contention for the queue.
 However, Graphs 4 and 5 reveal that improvements in the final hash function eliminate most
benefits of hardware multithreading in this application of bidirectional search. In retrospect, the
performance benefits of multithreading appearing in Graph 1 come about because multiple hardware
threads are performing independent but mostly useless work in parallel, thanks to the inefficient
hash function. The final, effective hash function eliminates fat from parallel execution. The threads
in Graphs 4 and 5 have less work to do, and so a more substantial percentage of their time is spent
contending for serial resources, primarily for access to dynamic storage allocation for state objects
and for access to hash table buckets. The multiple queue configurations perform better than their
single queue counterparts for large coin configurations because they eliminate thread contention for
access to queues. Library class ConcurrentHashMap in configuration libsetmultiq of Graph 5
surpasses atomic-based EmbeddedHashSet of mysetmultiq at the 8-thread mark in part because it
uses locks for contending writes. In cases where there is large amount of thread contention for
shared resources such as the hash tables of Graph 5, locking is better than atomic synchronization
because it reduces the amount of noisy, ineffective polling across memory access data paths [5].
Indeed, libsetmultiq is the only configuration in Graph 5 that shows monotonic improvement with
the number of threads after going past its initial spike in inefficiency at 2 threads.

4. Porting Java bidirectional search to C++11
The next step in this investigation entails porting the Java implementation of mysetmultiq to C++11.
C++11 does not offer counterparts to the library classes of java.util.concurrent such as
ConcurrentLinkedQueue and ConcurrentHashMap. It does offer C++ utility class wrappers for
POSIX threads, but more importantly, it adds an explicit memory model for concurrency to the
language, along with atomic operation classes in the library [20]. The availability of counterparts to
Java’s and Tesla-Fermi’s atomic operations is the primary benefit of C++11 for this project.
 Listing 5 gives the essentially line-for-line translation of Listing 2’s open addressing hash table
traversal function from Java into C++11 using atomic operations. Graphs 6 and 7 illustrate
performance curves for the Java implementation of mysetmultiq in relation to its C++11 counterpart.
The latter is as exact a translation from Java to C++11 as is possible. It continues to use dynamic
storage allocation to allocate state objects. It sizes and allocates arrays in classes
MultiCircularQueue and EmbeddedHashSet at startup time. Of course, C++11 does not have Java’s
garbage collector, and the only significant use of the delete operator is in explicit recovery of
redundant or ill-formed State objects pruned by worker threads, where an ill-formed State is a State
in which the location of the blank space would move outside of the coin position vector, or
retrograde motion of a coin would occur. The compiler used is g++ version 4.6.2 with the –O3
optimization level.
 Graph 6 shows essentially the same performance for Java and C++11 for a 33-position puzzle, with
C++11 monotonic performance improvement through 8 threads. Graph 7 shows that 16-threaded
C++11 outperforms Java for larger puzzle configurations.
 Graphs 8 and 9 show performance curves for the C++11 mysetmultiq implementation of Graphs 6
and 7 compared to the new C++11 static configuration. C++11 static represents a major step in
migrating bidirectional search to Cuda, comprising two substantial changes to C++11 mysetmultiq.

First, C++11 static uses a Python script that takes the puzzle size and number of threads as input and
then generates a configuration header file with the various table sizes and state encodings defined as
C++ constant values. The goal is to provide the compiler with as much static information as possible
to assist with optimization. Second, the Python script generates a custom definition for class State
with a different approach to encoding state from the previous Java and C++ configurations. This
encoding replaces using a byte array of coin information that stores one byte per coin with a highly
compressed array of 32-bit integers that uses one bit per coin and that stores the blank coin location
in a separate integer outside the p-bit vector. Though bit vector encodings can lead to longer
execution times than integer or byte array encodings for some applications, due to the time needed to
extract application data from the bit vectors, this is not the case for bidirectional search because the
hash table operations that use State objects do not need to extract application interpretations of the
integers storing the bit vectors. Once a State object’s constructor builds its bit vector and hashcode,
hashing can check for bucket collisions using far fewer comparison operations than the byte array
approach. A 43 position puzzle, for example, requires up to 43 byte equality comparisons in the
mysetmultiq configuration, while in static configuration it requires only 3 integer comparisons
consisting of two for the 32-bit integers housing the coin vectors and one for the 16-bit open
position. Also, the reduction in memory space consumed by State objects is essential for Cuda, both
because of device memory limits and because of the high overhead of global memory access. The
static configuration continues to use the C++ new operator to allocate object space and the delete
operator to recover redundant and ill-formed State objects. Note that operating system paging is not
a concern in the performance graphs examined in this paper because all benchmarks are constructed
with puzzle sizes that avoid paging on the lightly loaded benchmark machine. The reduction in time
resulting from the reduction in size is not a matter of reduction in paging overhead; it is a matter of a
reduction in the number of storage locations that are written during state construction and compared
during hash table manipulation.
 Graph 8 shows almost monotonic improvement with thread count in the C++11 static
configuration, with improvement decreasing after 4 threads and execution time rising slightly after
8. Reduction in inter-thread contention within hash table lookups and within the memory allocator
are the primary causes for improved leverage for multithreading. Graph 9 shows continuing
improvement in the growth in execution time as a function of the puzzle size. In fact, Graph 9 is the
first graph that shows an approximate doubling of time with each step increase in puzzle size, with
no additional overhead, corresponding to the 2(p – 5) / 2 + 6 growth in number of states discussed
earlier. The main reason that execution time now achieves this doubling rate is because earlier
algorithms increase time twice as a function of puzzle size, once for the doubling in the number of
states manipulated, and again for the increase in time needed to manipulate growing byte arrays
housing the coin data. The move to heavily compressed bit vectors in C++11 static changes State
object initialization and comparison from an O(p) operation to an O(1) operation. All State classes
in the 33 through 43-coin positions p of Graph 9 use two 32-bit integers to encode coin state and one
16-bit integer to record the open position.

5. Porting C++11 to Cuda
5.1 A homogeneous Cuda solution
The details of NVIDIA’s Tesla-Fermi GPU architecture and the accompanying Cuda tools appear in
several primary textbooks [16, 21-22], manuals, and numerous conference and journal papers. This
section repeats only the essentials for this study of bidirectional search. Figure 3 gives a block
diagram for the 1.15 GHz NVIDIA C2070 GPU card used in the study [21]. The C2070 is a so-
called Compute 2.0 Tesla-Fermi device. Each Streaming Multiprocessor (SM) consists of 32
hardware threads, comprising a thread warp in NVIDIA parlance. A higher level, software construct
for thread scheduling is the thread block that can contain more than the 32-threaded warp size, with
an application running more than 14 thread blocks if so configured. Effective thread block

scheduling typically requires the configuration of more thread blocks than actual hardware SMs,
often with more threads-per-block than threads-per-SM. Configuring a high number of thread blocks
makes it possible for the run-time scheduler to execute one ready block while others are waiting for
memory transfers. Configuring more than 32 threads per block is useful when multiple threads
within a block communicate via shared memory. The primary bottleneck in Cuda programs tends to
be memory access. The first set of GPU benchmark results presented here has the number of thread
blocks equal to the number of SMs (14) and the number of threads per block equal to the number of
hardware threads per SM (32). Increasing these parameters did not improve performance for this
memory-bound application.
 Threads execute within a warp as a Single Instruction Multiple Data (SIMD) stream, accessing
parallel data locations, and stalling during the time that conditional execution paths diverge. Distinct
SMs can execute different portions of a program in parallel, leading to the characterization of the
GPU as a Single Instruction Multiple Thread (SIMT) device. The SIMT C2070 is a collection of 14
SIMD devices.
 This study has examined numerous configurations of the C2070 device and the Cuda code. Graph
10 gives results for the two most notable configurations, using version 4.1 of the Cuda software
tools. The limit on device memory size limits the number of states that can be allocated, hence the
limits of 23 and 33 coin positions in Graph 10. The slower heap version uses the C++ new and
delete operators for State object allocation and recovery as used in the C++11 benchmarks. The
faster no heap version allocates the total space for State objects before beginning the search.
Individual State object allocation obtains storage from a given thread’s pool of State object storage,
and the search algorithm never deletes a redundant or ill-formed State object. A searching thread
reuses the storage from any such object in its allocation of the next expanded State object.
Allocation of fixed-size State objects from a statically allocated pool is faster because it is a simple,
monotonic storage allocator that moves forward in a pool at each request, it avoids any garbage
collection or object recovery overhead, it avoids thread contention for a shared memory pool, and it
conserves space by avoiding maintaining storage management data in regions adjacent to allocated
memory objects. The benefits are the substantial performance enhancements in speed and available
puzzle size illustrated in Graph 10 in going from the heap to no heap approach.
 The homogeneous GPU implementation of Graph 10 does not compare well with the Java and
C++11 implementations on the 16-threaded Intel processor. Execution times for 33 coins are Cuda
no heap : 4.92 seconds, C++11 static : 0.35 second, C++ dynamic : 0.68 second, and Java
mysetmultiq : 0.67 second. So-called GPU occupancy, the ratio of time spent computing within GPU
threads to available time, is a low 16.7% for test runs of various puzzle sizes. The 33 coin test run
shows a ratio of thread-divergent program branches to total branches of 5,938,364 / 40,565,579 =
0.15, which is a fairly good number. Most state expansions are not redundant or ill formed, and most
hash table lookups complete with a single probe of the table.
 Spatial and temporal locality of MultiCircularQueue manipulation in the homogeneous Cuda
implementation is good, making somewhat effective use of the L1 and L2 caches. As Figure 2
illustrates, pointers to State objects that are adjacent in a circular buffer FIFO reside in adjacent
memory locations. The Cuda program makes its only use of shared memory among multiple threads
in a thread block by synchronizing reading and writing of the work queues so that all threads in a
block read their respective states to expand and write their expanded states in parallel. More
aggressive use of shared memory to stage states-to-expand in shared memory arrays resulted in
small performance degradation because of the overhead of copying data from L2 cache to shared
memory and thence to thread registers. Configuring the available 64K of high-speed intra-SM
memory as 48K L1 cache and 16K shared memory works better than the alternative of explicitly
staging data in shared memory. The only worthwhile uses of shared memory in this program are for
synchronization of parallel initialization of data arrays at startup, and for synchronization of reading

and writing adjacent entries in a MultiCircularQueue’s array by multiple threads in that queue’s
thread block.
 Hash table access is the primary cause of poor GPU performance when compared with the 16-
threaded CPU. Good, non-colliding, non-clustering hash table access exhibits poor spatial locality,
substantially reducing the benefits of caching. This study avoided using cuckoo hashing that might
increase spatial locality slightly because of the costs of additional hash table and related memory
accesses [18]. An investigation in the Java program concerning caching hash table entries for this
application reveals that this puzzle application of bidirectional search exhibits poor temporal
locality. Temporally proximate interactions with the hash table show poor utilization of a simulated
table entry cache in Java. In addition to poor spatial and temporal locality of hash table accesses,
there are simply a high number of accesses to main memory that do not result in multiple uses of the
data once it arrives at GPU registers. GPU devices work best with coalesced reads and writes of
adjacent memory locations and multiple computations using data after those data arrive in registers.
Interactions with the state queue approach this ideal, but interactions with the hash tables do not. The
non-local, non-coalesced, high volume nature of hash table-resident data, and the relatively low
amount of reuse of data in registers, are the primary culprits in the poor performance of Cuda
relative to multiprocessor C++11 as seen in Graph 10.
 An additional source of overhead is the fact that use of atomic memory access by highly
synchronized threads introduces substantial additional stalls in memory interaction because these
threads collide on SIMD atomic operations [23], choking the memory access data paths.
MultiCircularQueue avoids this problem by using one thread per thread block that uses atomics to
stage coalesced reads and writes and by using a distinct queue for each thread block. Unfortunately,
a hash table has exactly the wrong dynamic, applying parallel atomic accesses by all synchronized
threads during interaction with the hash table. This observation repeats that made at the end of
Section 3 concerning the benefits of libsetmultiq’s blocking approach over mysetmultiq’s atomic
approach for high contentious threads at the right side of Graph 5. Locking performs better than
atomic access for highly contentious threads.

5.2 A heterogeneous Cuda / multicore CPU solution
The final architectural approach of this study uses heterogeneous processing, with a state expansion
phase taking place on the GPU and with all other work occurring on the 16-threaded Intel CPU. This
approach attempts to leverage the relative strengths of the two processing architectures at the cost of
copying state data back and forth between the two processors.
 Figure 1 provides the basis for understanding the substantially altered approach. Once the search
algorithm constructs a non-redundant, well-formed State object, there is never a need to delete that
object and recover its storage. Given the fact that every State object must pass through a queue at
least one time, it becomes straightforward to convert from a queue of pointers to State objects, to a
queue of State objects where the circular queue’s array is the State storage arena. In the
heterogeneous approach there is one MultiCircularQueue object whose array serves as both the
storage arena and the queue. In terms of Figure 1, this algorithm starts out by constructing a single
state-pair object containing the initial State and final State objects at location 0 in the queue’s array.
The multicore CPU (a.k.a. “host”) passes a copy of all unexpanded queue State objects to the GPU.
The GPU creates an expansion of each State object into four new State objects without checking for
redundant States, ill-formed States, or solutions, placing the new State objects in the “next ring” of
Figure 1, i.e., by building State objects at the frontier without conventional memory allocation costs.
Listing 6 gives GPU kernel function generateStates along with the signature for helper function
makeState that initializes the storage of a new State object at the frontier.
 Upon completion of GPU State expansion the program copies the newly constructed frontier back
to CPU memory where it uses the multiple CPU threads (16 in this study) to execute parallel
functions workerTaskReduceCompact, workerTaskReduceRecord and workerTaskReduceDetect.

Each function is multithreaded, and a custom C++ cyclic barrier class constrains all CPU worker
threads to perform the work of one of these functions in tandem with all other threads.
 Function workerTaskReduceCompact compacts the frontier returned by the GPU to eliminate ill-
formed States and redundant States whose references were previously placed in a hash table,
performing its work in parallel. The total frontier is divided into sub-regions, evenly among threads,
and then each thread compacts its own sub-region by using an algorithm based on the partitioning
algorithm of quick sort. Moving one pointer up from the start of its sub-region and another down
from the end, a worker thread copies a valid State object down and over an invalid State object
whenever the up-moving pointer encounters an invalid State and the down-moving pointer
encounters a valid State. The thread iterates until the pointers pass each other, and then waits in a
cyclic barrier until all threads complete this phase of workerTaskReduceCompact. Each thread
records the final boundary between its valid State objects and the start of undefined, tail-end storage
in a per-sub-region data structure. Once this initial sub-region compaction is complete,
workerTaskReduceCompact employs up to half of the active threads to merge valid States from the
highest regions into the lowest regions in which space is available. This phase of
workerTaskReduceCompact is inspired by merge sort, since it is basically a merge of “sorted” data,
where the sort values consist of valid State objects followed by invalid State object storage. It uses
the highly efficient memcpy library function to copy all appropriate, valid State objects in one call
per thread. After each phase of coarse-grain merger, workerTaskReduceCompact sets the number of
threads employed to the number of sub-regions still requiring State objects from above. Upon
completion workerTaskReduceCompact will have merged all valid State objects into the bottom of
the frontier; subsequent queue array space is available for new State construction. Like quick sort
and merge sort, the compaction algorithm is O(n log(n)) on the size of the frontier being compacted,
with hash table lookup required only during the quick sort-inspired phase.
 After completion of workerTaskReduceCompact, all worker threads enter function
workerTaskReduceRecord to record all states in the hash tables. Listing 7 gives the C++ code for
this function. It is important to note that, since Cuda 4.1 supports g++ 4.4 but not g++ 4.6, and that
the former does not support C++ atomics, it was necessary to recode class EmbeddedHashSet to use
POSIX mutex locks instead of atomics [24]. Reversion to locks is beneficial because
workerTaskReduceCompact consists almost entirely of writing pointers into the two hash tables via
method EmbeddedHashSet::add of Listing 7. Locks cut down on memory data path contention when
many threads are accessing shared data paths heavily. In addition to using lock striping to encourage
parallelism in hash table updates, the heterogeneous algorithm makes no use of hash table locks or
other table synchronization anywhere outside of workerTaskReduceRecord. Given the fact that all
hash table updates occur from within workerTaskReduceRecord – the other host algorithms never
mutate the table – it is possible for workerTaskReduceCompact and workerTaskReduceDetect to
read the effectively immutable hash tables while making no use of thread synchronization.
 Finally, all threads enter function workerTaskReduceDetect of Listing 8 to check the frontier for
solutions to the puzzle by inspecting the hash tables. For this coin puzzle it is possible to compute
the length of a solution path in advance using the length expression ((p + 1) / 2)2 – 1 given earlier.
The heterogeneous host program uses this information to defer invoking workerTaskReduceDetect
until the paths to the frontier satisfy this length constraint. Detection of solutions in the frontier
terminates the algorithm.
 Graphs 11 through 13 give the performance curves for various related configurations. C++11 static
is the earlier, pre-Cuda C++ configuration of Graphs 8 and 9, hybrid initcpu is the heterogeneous
algorithm just described with parallel initialization of the hash table arrays occurring on the host
machine, and hybrid initgpu is the heterogeneous algorithm with parallel initialization of the hash
table arrays occurring on the GPU. CPU g++ with locks is the current algorithm implemented
entirely on the CPU using the state expansion algorithm from the GPU. Finally, hybrid interleaved is
a modification of hybrid initgpu that interleaves execution of the CPU and GPU. It expands half of

the frontier on the GPU while compacting and recording the previous half on the host CPU;
otherwise the heterogeneous algorithm remains the same.
 The thread counts refer to CPU threads. Experimentation determined that using 112 thread blocks
containing 128 threads each yields the best performance for the GPU on this configuration. GPU
occupancy was a consistent value of 66.7% for both array initialization and State generation, a much
better value than the 16.7% value for the homogeneous Cuda configuration. Arguably, given the fact
that the simple multithreaded, highly parallel hash table initialization loop achieves 66.7%
occupancy, that value is probably a valid limit for what state expansion on the GPU can achieve,
given the limits on re-use of data in GPU registers.
 Graph 11 shows the CPU-only g++ configuration just beating CPU+GPU variations for 43 coin
positions starting at the 4-threaded point. All of the new benchmarks near the bottom of Graph 11
show monotonic improvement with the addition of threads, as do those benchmarks for 49 coin
positions in Graph 12. Graphs 11 and 12 also show that for a large search space, when there are only
1 or 2 threads allocated to perform the host CPU’s portion of the work, using the GPU for state
expansion results in improved performance over the CPU-only g++ configuration. Graph 13 shows
the CPU-only g++ curve to be the marginal winner when using 16 multiprocessor host threads, with
hybrid initcpu coming in second on average. The CPU-only curve is the only one capable of solving
the 51-position puzzle due to memory limits of the GPU.
 The results in Graphs 11 and 12 are of interest for comparing single-threaded or dual-threaded
performance on a 3.6 GHz conventional Intel processor using a large cache size to a 1.15 GHz
Tesla-Fermi GPU. Using this hybrid configuration of the program to solve the 49-position puzzle,
which searches through about 268,435,456 states in the 1,580,132,580,471,900-state space, takes the
following number of seconds in the following single-host-threaded configurations: CPU-only g++:
57.8; hybrid initcpu: 35.6; hybrid initgpu: 40.8; and hybrid interleaved: 41.5. The numbers for the
dual-host-threaded configurations are: CPU-only g++: 34.1; hybrid initcpu: 27.6; hybrid initgpu:
28.7; and hybrid interleaved: 26.6. For the single-threaded host the improvement in using
heterogeneous CPU+GPU processing over CPU-only processing is (57.8-35.6) / 57.8 = 38.4%. For
the dual-threaded host the improvement is (34.1-26.6) / 34.1 = 22.0%. A dual-threaded host is a
common host configuration at the time of this study. Furthermore, the retail price of the Intel-based
host machine used in these benchmarks was about $7500 when purchased in 2011, while the retail
price of the NVIDIA 2070 was about $2500. The improvement in going from 2 to 16 threads on the
CPU-only g++ host configuration is (34.1-12.6) / 34.1 = 63.0%, giving an improvement ratio of
about 2.9x in using MIMD CPU acceleration instead of SIMT GPU acceleration for a dual-threaded
host, while incurring a roughly 2.14x increase in monetary cost of $7500 for the 16-threaded
processor versus $1000 + $2500 for a conventional dual-threaded host + C2070.
 This study also investigated using page-locked host memory shared between the CPU and the GPU
in the non-interleaved, hybrid initcpu solution. Compared to 17.1 seconds for 49 positions using 16
host threads for hybrid initcpu, the page-locked implementation requires 190.6 seconds. Clearly, the
overhead of fetching and storing individual memory locations of host memory via the host’s PCI bus
is an order of magnitude worse than the block copy overhead entailed when the GPU uses its own
memory.
 Making valid comparisons between CPUs and GPUs is difficult. It is easy enough to find
benchmark programs that run faster on GPUs than on single-threaded CPUs, especially CPUs with
relatively slow clocks. In the interest of comparing GPU performance on this problem to a range of
MIMD processor architectures, Graph 14 gives performance for the Cuda no heap solution of Graph
10 compared to the Intel CPU-only g++ curve of Graph 13 (CPU g++ w locks) along with that same
CPU-only algorithm implemented on two other multicore machines. The AMD architecture is a Sun
x6400 server with a 2.7 GHz, 8 core AMD Opteron 885 processor (16 hardware threads) and 32 GByte
of memory with 128 Kbyte of L1 cache and 1 MByte of L2 cache per dual-threaded core. Like the Intel
machine, the AMD is rich in cache. The Sparc architecture is a Sun T5120 server with a 1.2 GHz, 8

core Sparc T2 processor (x 8 threads per core = 64 threads) with 16 Kbytes of L1 instruction cache
and 8 Kbytes of L1 data cache per 8-threaded core, and 4 MByte of L2 cache distributed among all
cores [25]. The Sparc machine is low in L1 and L2 data cache compared to the AMD server. Graph
14 gives the Sparc performance at 16 threads (the fastest Sparc curve), and increasingly slower
execution when using 32 and 64 threads. The problem with using more than 16 hardware threads for
this Sparc configuration is inter-thread cache contention and memory path contention, making it an
excellent platform for comparison with the GPU. At 16 threads there are 2 hardware threads per core
contending for limited L1 caches and memory access data paths. There are benchmarks for which
the Sparc machine outperforms the AMD machine, and there are benchmarks for which the Sparc
machine can utilize all 64 hardware thread effectively. This bidirectional search algorithm is not one
of them because the poor memory access locality of the hash tables leads to poor cache utilization
and cache contention. Homogeneous Cuda beats the Sparc g++ 32 configuration up to the 27
position puzzle and the Sparc g++ 64 configuration up to the 29 position puzzle.

6. Conclusions and future work
Despite the fact that the GPU offered little to no performance advantage over the available MIMD
processors for bidirectional search, due to the substantial number of irregular memory accesses, the
steps of refactoring the original Java algorithm to make it possible to run bidirectional search on a
GPU has led to a number of important discoveries that help to accelerate any application of
bidirectional search.
 First, a designer should prototype an application of bidirectional search in a language with
adequate library support in order to discover empirical curves in the growth of state space and
processing time, as well as solution path length. The discovery of these values makes it possible to
configure constant-size data structures that eliminate the expense of dynamic storage allocation and
recovery. The prototype need not be multithreaded.
 Second, referring to Figure 1 and Listings 6 through 8, the most efficient approach in time and
space utilizes the work queue through which every state must flow as the actual storage arena.
Figure 1 illustrates monotonically advancing addresses in the queue’s linear address space as
concentric search frontiers. Bidirectional search allocates copies of the initial and final state objects
at the beginning of this linear queue (i.e., at the initial frontier), and then performs the following
steps cyclically. The best performing test runs in the current study perform the follow steps
sequentially, although it is possible to interleave execution of the generateStates step with the
remaining steps, operating on each half of the frontier concurrently, as outlined for the hybrid
interleaved configuration above. Internally, each of the following steps admits to a highly parallel
implementation.

1. The generateStates step takes each of the immutable state objects at the highest current frontier
f and generates b states at the new frontier f+1 where b is the worst-case branching factor. The
storage location for a new, expanded object lies at a linear offset within the queue’s array.
There is no dynamic storage allocation. Expansion takes the form of initialization of state
object fields using storage in the pre-allocated queue array. Multiple threads can expand
multiple states, indexed using the unique thread number, without synchronization. This step
corresponds to Listing 6.

2. The reduceCompact step eliminates ill-formed states, which are states that violate state-specific
constraints and heuristics, as well as redundant states representing cycles in search paths, using
a parallel compaction algorithm that copies well-formed states occurring later in the queue
array down to the locations of the ill-formed states. This step first divides frontier f+1 evenly
among the worker threads. Each worker thread compacts its own sub-region using an algorithm
similar to quick sort’s partitioning algorithm, where all well-formed, non-redundant states must
precede all ill-formed or redundant states in the sort of the sub-region. Detection of redundant
states requires concurrent reading of the hash sets of previously encountered states in each

direction, but because these hash sets are immutable during this phase, they have no need for
synchronized access. Once all worker threads have partitioned their sub-regions,
reduceCompact cyclically merges well-formed states from higher sub-regions into lower sub-
regions by copying well-formed states over ill-formed states via the efficient memcpy library
function. Each merge phase can utilize as many worker threads as there are pairs of sub-regions
to be merged. At the point that there are no more pairs of sub-regions to merge, frontier f+1 has
been compacted.

3. The reduceRecord step records references for all states in frontier f+1 into the appropriate
forward or backward hash set. Multiple threads can record all references from frontier f+1 in
parallel, advancing through the frontier using address sequencing that maximizes cache
utilization for reading the queue array. Given the fact that all threads are writing to the hash
sets in a tight loop, there is a somewhat high probability of thread contention, leading to a
preference for hashing using lock stripes over hashing using atomic stripes. This is the only
step requiring synchronized access to hash table buckets. This step corresponds to Listing 7.

4. The reduceDetect step inspects all states in frontier f+1 for membership in the hash set coming
from the opposite side of the search space. For each such member detected it recovers, records
and reports a solution path. As in reduceCompact, because the hash sets are immutable during
this phase, they have no need for synchronized access. At the end of reduceDetect, if it has
detected any solutions, then this algorithm terminates. In applications where it is possible to
determine an a priori solution path length as a function of search problem parameters, as it is
for the Penny-Dime problem, it is possible to avoid the overhead of executing reduceDetect
until the search path length f+1 * 2 reaches the required value.

 These guidelines apply to any application of bidirectional search, and constitute the primary
outcome of this study. They represent a map / partial reduce approach in the functional
programming sense [26], where generateStates maps frontier f to frontier f+1 and the other steps
partially reduce f+1.
 Replacing the hash table with another data structure that implements a set interface such as a sorted
tree or a skip list [27] has little promise for GPUs, since traversing linked structures entails multiple,
non-coalesced memory accesses. Designing a hash function that increases spatial locality of
application-proximate keys in the search space may be possible, but the magnitude of the search
problem makes any effective solution on a current GPU architecture doubtful. For a problem with
branching factor b = 2, half of the explored states reside in the frontier being checked for redundant
and solution states.
 For bidirectional search problems with substantially more computational overhead in the
generateStates step than that of Penny-Dime, the hybrid interleaved approach still holds promise of
leveraging the GPU. One problem with this approach for Penny-Dime is that the generateStates step
is too cheap, and so the cost of transporting state to the GPU outweighs the benefit. For problems
with state expansion that grows in complexity without a commensurate growth in memory size, and
where states expansion uses a GPU-friendly model of memory interaction, the hybrid interleaved
approach may be worth investigating.
 The next step in the current study is to investigate the viability of porting search algorithms without
the hash set requirements of bidirectional search to heterogeneous MIMD and GPU parallel
processing architectures.

7. Acknowledgements
This work was made possible by the generous grant of three multiprocessor servers from Sun
Microsystems in 2009. A curriculum development grant from the PA State System of Higher
Education supported an initial round of designing benchmarks and course materials. A second
curriculum development grant from Intel’s Parallelism in the Classroom program has made ongoing

extension of such materials possible. Finally, an equipment grant from NVIDIA made the
exploration of a Tesla GPU implementation of this work possible.

8. References
[1] Pohl I., “Bi-Directional Search,” Machine Intelligence (6), 1971, pp. 127-140.
[2] Toptsis A., Chaturvedi R. A., and Feroze A., “Kohonen-guided Parallel Bidirectional Voronoi-

assisted Heuristic Search,” International Journal of Advanced Science and Technology (5),
April, 2009.

[3] Nelson P. C., “Parallel Bidirectional Search Using Multi-Dimensional Heuristics”, Ph.D.
Dissertation, Northwestern University, Evanston, Illinois, June 1998.

[4] Nelson P. C., and Toptsis A., “Unidirectional and Bidirectional Search Algorithms”, IEEE
Software 9(2), March 1992, pp. 77-83

[5] Goetz B, et. al., Java Concurrency in Practice, Addison-Wesley, 2006.
[6] Parson D. and Schwesinger D., “Minimum-Blocking Parallel Bidirectional Search,” Proceedings

of the 2012 International Conference on Parallel and Distributed Processing Techniques and
Applications, CSREA Technology Press, Las Vegas, NV, July 2012.

[7] Oracle Corporation, documentation for classes in package javat.util.concurrent,
http://docs.oracle.com/javase/6/docs/api/index.html, August 2012.

[8] Michael M. M. and Scott M. L., “Simple, Fast and Practical Non-blocking and Blocking
Concurrent Queue Algorithms,” Proceedings of Fifteenth ACM Symposium on Principles of
Distributed Computing (PODC '96), Philadelphia, PA, 1996.

[9] Herlihy and Shavit, The Art of Multiprocessor Programming, Morgan Kaufmann, 2008.
[10] Johnsonbaugh R., Discrete Mathematics, Second Edition, New York, NY: Macmillan, 1990.
[11] Cormen T., et. al., Introduction to Algorithms, Third Edition, Cambridge, MA: MIT Press,

2009.
[12] Knuth, D., The Art of Computer Programming, Volume 3, Search and Sorting, Reading, MA:

Addison-Wesley, 1973.
[13] Brass P., Advanced Data Structures, Cambridge University Press, 2008.
[14] Comer D., Network System Design with Network Processors, Agere Version, Upper Saddle

River, NJ: Prentice Hall, 2005.
[15] Parson D., Incremental Reorganization for Hash Tables, U.S. Patent 6,915,296 B2, July 2005.
[16] Kirk D. and Hwu W., Programming Massively Parallel Processors. Burlington, MA: Morgan

Kaufmann, 2010.
[17] Alcantara, D., et. al., “Real-Time Parallel Hashing on the GPU,” ACM Transactions on

Graphics (Proceedings of ACM SIGGRAPH Asia 2009), Yokohama, Japan.
[18] Alcantara, D., Efficient Hash Tables on the GPU, Ph.D. dissertation, University of California,

Davis, 2011.
[19] Williams R., “A Painless Guide to CRC Error Detection Algorithms,” August 1993,

http://www.ross.net/crc/download/crc_v3.txt, link checked August 2012.
[20] Williams A., C++ Concurrency in Action. Shelter Island, NY: Manning Publications, 2012.
[21] Farber R., Cuda Application Design and Development. Waltham, MA: Morgan Kaufmann,

2011.
[22] Sanders J. and Kandrot E., Cuda by Example. Upper Saddle River, NJ: Addison-Wesley, 2011.
[23] Stuart J. and Owens J., “Efficient Synchronization Primitives for GPUs,” Cornell University

Library, arXiv:1110.4623v1 [cs.OS], http://arxiv.org/abs/1110.4623v1, link checked August
2012.

[24] Lewis B. and Berg D., Multithreaded Programming with Pthreads. Mountain View, CA: Sun
Microsystems / Prentice Hall, 1998.

[25] Fujitsu, Sparc Enterprise T5120, T5220, T5140 and T5240 Server Architecture,
http://www.fujitsu.com/downloads/SPARCE/whitepapers/T5x20-T5x40-wp-e-200907.pdf,July
2009.

[26] Ullman J., Elements of ML Programming. Englewood Cliffs, NJ: Prentice Hall, 1994.
[27] Pugh W., “Skip Lists: A Probabilistic Alternative to balanced Trees,” Communications of the

ACM 33(6) (June 1990), p. 668-676.

Figure 1: Bidirectional Search as a Maze

enqueue initial state into work queue
enqueue final state into work queue
set forwardStatesSet to the set of {initial state}
set backwardStatesSet to the set of {final state}
set setOfSolutions to empty set {}
set isdone flag to false
start parallel threads executing the following code:
while not isdone
 dequeue a state-to-expand from front of work queue
 for each single-step expansion of state-to-expand
 if expansion is in StatesSet from opposing side
 if 1st solution or cost equals solutions’ cost
 add expansion’s path to setOfSolutions
 else (cost is greater)
 set isdone flag to true
 else if expansion is in StatesSet from this side
 // a cycle or converging DAG path detected
 do not use this expansion
 else
 add expansion to StatesSet from this side
 enqueue expansion in work queue

Listing 1: Parallel, minimum-blocking dataflow algorithm

Graph 1: Execution time for 4 classes of queues and sets

Figure 2: Circular buffer implementation of a FIFO using atomic data

for (int tries = 0 ; tries < limit ; tries++) {
 E v ;
 if (isinsert && table.compareAndSet(bucket, null, e)) {
 v = e ;
 result[1] = 1 ;
 numElements.incrementAndGet();
 } else {
 v = table.get(bucket);
 }
 if (v == null || v.equals(e)) {
 result[0] = bucket ;
 return result ;
 } else {
 bucket = (bucket + prm) & bitmask ;
 }
 }

Listing 2: The core of the thread-safe, non-blocking hash table search function

Graph 2: Execution time for 4 classes of queues and sets

 int tmphash = initOpen ^ initVector.length ;
 for (int i = 0 ; i < initVector.length ; i++) {
 // Since all states will have the same number of pennies,
 // dimes and a single space, add some weight by location
 tmphash = tmphash ^ (initVector[i] * i);
 }
 hashcode = tmphash ;

Listing 3: The initial, naive hash function for a state object

 int tmphash = initOpen ;
 for (int i = 0 ; i < initVector.length ; i++) {
 if (initVector[i] == DIME) {
 tmphash = tmphash ^ (tmphash << 6) ^ i ;
 } else if (initVector[i] == EMPTY) {
 tmphash = tmphash ^ (tmphash << 6) ^ (i * i);
 }
 }
 hashcode = tmphash ;

Listing 4: The final, effective hash function for a state object

Graph 3: Execution time using the final hash function

Graph 4: Execution time for 29 positions using the final hash function

Graph 5: Execution time for 33 positions using the final hash function

 for (int tries = 0 ; tries < limit ; tries++) {
 E * v ;
 E * null = NULL ;
 // compare_exchange_strong can overwrite null
 if (isinsert && table[bucket].compare_exchange_strong(null, e)) {
 v = e ;
 result[1] = 1 ;
 numElements++ ;
 } else {
 v = table[bucket].load();
 }
 if (v == NULL || v->equals(e)) {
 result[0] = bucket ;
 return ;
 } else {
 bucket = (bucket + prm) & bitmask ;
 }
 }

Listing 5: The thread-safe, non-blocking hash table search function in C++11

Graph 6: Execution time for 33 positions in Java and C++11

Graph 7: Execution time for 16 threads in Java and C++11

Graph 8: Execution time for 43 positions using two C++11 configurations

Graph 9: Execution time for 16 threads using two C++11 configurations

Figure 3: Tesla-Fermi Compute 2.0 in the NVIDIA C2070 GPU

Graph 10: Execution time for two Tesla-Fermi Cuda configurations

// This is the CUDA kernel that performs State expansion.
// The host places the pairsToRead at the beginning of queueArray, and
// the pairsToWrite are just beyond the pairs to read. Each CUDA thread
// expands 1 pair-to-read into up to 4 pairs-to-write.
__global__ void generateStates(unsigned long pairsToRead,
 unsigned long startingStateOffset) {
 uint32_t myix = blockIdx.x * THREADSPERBLOCK + threadIdx.x ;
 while (myix < pairsToRead) {
 uint32_t stateix = ((&(queueArray[myix].fwdState))
 - ((State *) queueArray)) + startingStateOffset ;
 StatePair *myout = queueArray + pairsToRead
 + (myix * STATE_EXPANSION_PER_STEP);
 for (int transform = 0 ; transform < STATE_EXPANSION_PER_STEP
 ; transform++) {
 makeState(&(queueArray[myix].fwdState), stateix, transform,
 &(myout->fwdState));
 makeState(&(queueArray[myix].bkdState), stateix+1, transform,
 &(myout->bkdState));
 myout++ ;
 }
 myix += THREADSTOTAL ;
 }
}

__device__ void makeState(State *predecessor, uint32_t predecessorIndex,
 int transform, State *storage) /* This function initializes the State object. */

Listing 6: Cuda state expansion for the heterogeneous CPU / GPU approach

static void workerTaskReduceRecord(int threadnum, int threadcount) {
 // Record by stripes to maximize cache utility.
 // This is the only phase in which the hash table uses locks.
 if (threadnum < sizeOfReduction) {
 int32_t riser = startOfReduction + threadnum ;
 while (riser < topOfStatePairs){
 fwdStatesGlobal->add(&(hoststate[riser].fwdState));
 bkdStatesGlobal->add(&(hoststate[riser].bkdState));
 riser += threadcount ;
 }
 }
 workerCyclicBarrier(threadnum, threadcount, NULL);
}

Listing 7: Heterogeneous hash table updates on the CPU using GPU-like code

static __host__ bool isSolution(State *fwds, State *bkds) ;
static void workerTaskReduceDetect(int threadnum, int threadcount) {
 // Inspect by stripes to maximize cache utility.
 if (threadnum < sizeOfReduction) {
 int32_t riser = startOfReduction + threadnum ;
 while (riser < topOfStatePairs) {
 if (hoststate[riser].fwdState.getOpen() != -1) {
 isSolution(&(hoststate[riser].fwdState),
 &(hoststate[riser].bkdState)) ;
 }
 riser += threadcount ;
 }
 }
 workerCyclicBarrier(threadnum, threadcount, NULL);
}

Listing 8: Heterogeneous solution detection on the CPU using GPU-like code

Graph 11: Execution time for 43 positions using CPU / GPU configurations

Graph 12: Execution time for 49 positions using CPU / GPU configurations

Graph 13: Execution time for 16 CPU threads using CPU / GPU configurations

Graph 14: Execution time for Cuda and CPUs on various architectures

