Using Weka to Mine Temporal Work Patterns of Programming Students

Dale E. Parson, Kutztown University of PA, http://faculty.kutztown.edu/parson

Follow-up to “Mining Student Time Management Patterns in Programming Projects”

Dale E. Parson and Allison Seidel, FECS’14 (#FEC2189)
http://faculty.kutztown.edu/parson/FECS2014ParsonTutorial.zip
http://www.cs.waikato.ac.nz/ml/weka/

1. Examine a typical programming project directory, makefile, and logdata.sh script.

2. Run CLASSPATH=.. make build test and examine the zipfile & datamine/.

Note that the mv command moves a zip file to the instructor’s inbox every time a student runs make [build | test | turnitin]. Much of the later data extraction works with multiple zipfiles from multiple make actions, e.g., constructing a picture of a “work session” from multiple make invocations. (A “session” consists of one or more make invocations with no gaps >= 60 minutes.)

Alternative run /buildunix.sh && /rununix.sh or buildwindows.bat, runwindows.bat to build without a makefile, used for build & test on a student machine. This step creates and appends data to data_do_not_lose_this_file.txt.

3. Run python worktimeToARFF.py 1 prjdata.csv fakegrades.csv surveys.csv emailedata.csv fakearff.arff ./fakemine FillWord4/

Use Python 2.7.X. Here are the contents of the demo CSV files:

prjdata.csv
##cours,sem,prjn,start,end
csc243,sp2014,1,2014-02-10 00:01,2014-02-28 23:59
csc243,sp2014,2,2014-02-27 00:01,2014-03-16 23:59

Course, semester, project number, start datetime, end datetime

fakegrades.csv
##suem,suid,Gprj1,Gprj2,Gprj3,ignore,ignore,Gprj4,Gprj5,ignore,ignore,Gcrs,Gle t,yea,trk,Cumg,Crdg,Cumm,Crdm
parson,c243s14id1,1.02,1,0.97,0.97,1.02,1.05,0.9,0.85,0.9572,A,Sophomore,GRD Liberal Arts & Science - BS CSC/INFO TECHNOLOGY,3.82,45,3.67,21

See schema_STUDENT_PRJ_WORK.txt. Fake data out of grading spreadsheet.

surveys.csv
##suem,prjn,Xasn,Xdue,Xams
parson,1,1,2,3

Project number, count of competing CS assignments handed out, due, and any competing exam.

emaildata.csv
##suem,prjn,clue,count
parson,4,0,1
parson,4,1,2

Email to instructor. The clue field is 0 for clueless emails, 1 for emails with good student understanding.

fakearff.arff is the output ARFF file.

/fakemine contains the mined ZIP files.

FillWord4/ is the initial handout directory.

Notes from worktimeToARFF.py:

Mac/OSX datetime strings are incompatible. Linux & Solaris are OK.

__seconds_between_sessions__ = 3600 # Set to interval separating sessions.
__mode_session_time_minutes_quantum__ = 15
__mode_session_bytes_quantum__ = 1000
__mode_session_lines_quantum__ = 20
__diff_quantum__ = 20

Next pattern depends on the course's source language.
__src_re__ = re.compile(r'\^[^\s]+\[^\w]*\w[^\w]+\w[^\w]
4. Run `python addrank.py fakearff.arff` to get the centile rankings.

5. Run `./wekaconf.sh fakearff.arff.tmp.arff` to inspect the fake data.

6. Open demoStudentDB.arff to inspect some data prepared for the tutorial.

 This dataset is a fake dataset prepped for the demo.

7. Discuss **Preprocessing** (StringToNominal and date removal), **Select attributes**, redundant attributes, analyses for a **numeric target attribute** (Simple K-means, M5Rule and M5P tree), discretizing and analyses for **nominal target attributes** (OneR, J48, naiveBayes).

schema_STUDENT_PRJ_WORK.txt

```
1  studentid          suid       (Sophomore, Junior, Senior)
2  student-year       syear      ($D or IT or OT for other)
3  student-track      strk
4  course             cour
5  semester           seme
6  project-number     prjn
7  project-start-datetime prjs
8  project-end-datetime prje
9  assigned-until-started-hours Hstr (round to nearest hour)
10  completed-until-due-hours Hend (round to nearest hour)
11  started-until-due-hours Jstr (round to nearest hour)
12  Jstr - hours lost to skipped days Jfst (Jstr - 24 * each skip)
13  assigned-until-completed-hours Jall (round to nearest hour)
14  started-until-completed-hours Jall (round to nearest hour)
15  min-session-time-minutes Min
16  max-session-time-minutes Max
17  mean-session-time-minutes Mavg
18  stddev-session-time-minutes Mdev
19  median-session-time-minutes Mmed
20  mode-session-time-minutes Mmod (round to nearest 15)
21  mean-time-between-sessions-hours Havg
22  stddev-time-between-sessions Hdev
23  min-session-files Fmin
24  max-session-files Fmax
25  mean-session-files Favg
26  stddev-session-files Fdev
27  median-session-files Fmed
28  mode-session-files Fmod
29  min-session-bytes Ymin
30  max-session-bytes Ymax
31  mean-session-bytes Yavg
32  stddev-session-bytes Ydev
33  median-session-bytes Ymed (round to nearest 1000)
34  mode-session-bytes Ymed (round to nearest 1000)
35  min-session-lines Lmin (may need to use ?)
36  max-session-lines Lmax (may need to use ?)
37  mean-session-lines Lavg (may need to use ?)
38  stddev-session-lines Ldev (may need to use ?)
39  median-session-lines Lmed (may need to use ?)
40  mode-session-lines Lmod (round 20, need to use ?)
41  min-session-added Amin (may need to use ?)
42  max-session-added Amax (may need to use ?)
43  mean-session-added Aavg (may need to use ?)
44  stddev-session-added Adev (may need to use ?)
45  median-session-added Amed (may need to use ?)
46  mode-session-added Amod (round 20, need to use ?)
47  min-session-deleted Dmin (may need to use ?)
48  max-session-deleted Dmax (may need to use ?)
49  mean-session-deleted Davg (may need to use ?)
```
work between the start and the final turnitin. The most predictive attribute might be useful.

1. Any attribute containing ? as a value in this dataset can and probably should be discarded on initial analysis. Find the grey cells in Weka's EDIT window. That includes mode attributes, because there is not always an unambiguous mode. It includes line data (lines changed/added/deleted), and surveys (because of survey data collection errors), and probably others.

2. Of the string data, studentID should be removed, and the others should be normalized using filter StringToNominal.

3. Attributes Gcrs, Glet and GcrsRank are redundant with each other, giving different views of the same data. You can keep at most one at a time, or the algorithms will infer one from the others. Gprj, Gplt and GprjRank are the same for the project. GcrsRank and GprjRank are numeric centile ranks for the course and project respectively. They may be very useful since they expand clumped grade concentrations, and can be Discretized into (10?) bins for J48, NaiveBayes and other classifiers requiring nominal targets.

4. Looking back through the spring csc243 dataset with Weka in September, I am surprised to see OneR outperforming J48 in various basic investigations. Apparently, J48 is being confused by ambiguous data. I don’t remember that from my quick look this summer.

5. One approach is to use OneR to the find the most use predictive attribute, remove that attribute, then see what the second-most predictive attribute is, then remove that. This approach will give you a set of perhaps up to 10 of the most predictive attributes. Then you can throw out all the others, keep those 10, and use more powerful algorithms such as J48, NaiveBayes or M5P / M5Rules on those attributes to see how they fare. The number 10 is just a guess. Too few means throwing away too much data; too many become hard to interpret.

6. My final suggestion for now is to see what you can use to predict Gplt, and Gprj, GprjRank, and a Discretized GprjRank, one at a time. Gplt and a Discretized GprjRank are nominal and therefore amenable to OneR, J48, NaiveBayes and RandomTree. Gprj and GprjRank are numeric and therefore amenable to M5P, M5Rules, and SimpleKMeans clustering (among others). Creating enough clusters to show at least 4 different grade levels in the target attribute actually looks like it might be useful.

7. May 16, 2014 added Jfst which is Jstr - 24 hours * number of days skipped work between the start and the final turnitin.