Chapter 10

Random Variables: Moment Generating Functions

10.1 Introduction

If one knows what the probability mass function (PMF) is; probability density function (PDF) is; or, if one knows what the cumulative distribution function (CDF) is then one is completely versed in all aspects of the random variable.

The other type of function that if known to a person then the person is completely versed in all aspects of the random variable is the moment generating function (MGF) which we will now consider.

10.2 MGFs

Definition 10.2.1. Let $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the probability mass function (PMF) of the discrete random variable X. The **moment generating function** (MGF) of X (where it exists) is defined where $\exists \varepsilon > 0 \ \ni \ \forall \ t \in (-\varepsilon, \varepsilon)$

$$M_X(t) = E[e^{tX}] = \sum_x (e^{tX} \cdot f_X(x))$$

 $M_X : \mathbb{R} \longrightarrow \mathbb{R}$

Theorem 10.2.1. Let X be a discrete random variable where $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$. Let $\alpha, \beta \in \mathbb{R}$, $\exists \varepsilon > 0 \ni \forall t \in (-\varepsilon, \varepsilon)$ $M_X(t)$ exists.

1.
$$M_{(X+\alpha)}(t) = e^{(t\alpha)} \cdot M_X(t)$$

2.
$$M_{(\beta X)}(t) = M_X(\beta t)$$

3.
$$M_{(\frac{X+\alpha}{\beta})}(t) = e^{(\frac{\alpha t}{\beta})} \cdot M_X(\beta t)$$

Definition 10.2.2. Let $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the probability mass function (PMF) of the discrete random variable X and let $M_X(t)$ where $M_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the moment generating function (MGF) of X. $E[X] = M'_X(t)$ at t = 0 (alternately $E[X] = \frac{d}{dt}(M_X(t))$ at t = 0 or $E[X] = M'_X(0)$).

Definition 10.2.3. Let $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the probability mass function (PMF) of the discrete random variable X and let $M_X(t)$ where $M_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the moment generating function (MGF) of X. $E[X^2] = M_X''(t)$ at t = 0 (alternately $E[X^2] = \frac{d^2}{d^2t}(M_X(t))$ at t = 0 or $E[X] = M_X''(0)$).

Definition 10.2.4. Let $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the probability mass function (PMF) of the discrete random variable X and let $M_X(t)$ where $M_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the moment generating function (MGF) of X. $E[X^n] = M_X^{(n)}(t)$ at t = 0 (alternately $E[X^n] = \frac{d^n}{d^n t}(M_X(t))$ at t = 0 or $E[X] = M_X^{(n)}(0)$).

Theorem 10.2.2. Let X be a discrete random variable Then \exists a unique function, $f_X(x)$, which is its probability mass function where such exists; \exists a unique function, $F_X(x)$, which is its cumulative distribution function where such exists; and, \exists a unique function, $M_X(t)$, which is its moment generating function where such exists.

We claim there are some Special MGFs associated with discrete random variables:

Let
$$X \sim Bin(x, p, n)$$

$$M_X(t) = ((1 - p) + pe^t)^n$$
Let $X \sim Pois(x, \lambda)$
$$M_X(t) = e^{(\lambda(e^t - 1))}$$
Let $X \sim Geo(x, p)$
$$M_X(t) = \frac{pe^t}{(1 - e^t(1 - p))} \ni t < -ln(1 - p).$$

10.3 Exercises: Moment Generating Functions

Exercise 10.3.1. Let $X \sim Pois(x, \lambda = 4)$.

A. Use the MGF for $X \sim Pois(x,4)$ to find μ

B. Use the MGF for $X \sim Pois(x, 4)$ to find σ^2

C. Use the MGF for $X \sim Pois(x, 4)$ to find η_3

10.4. MORE MGFS 91

Exercise 10.3.2. Let $X \sim DisUni(x, \theta)$. $\theta \in \mathbb{N}$

$$DisUni(x,\theta) = f(x) = \begin{cases} \frac{1}{\theta}, & x \in \mathbb{N}_{\theta} \\ 0 & else \end{cases}$$
 $f: \mathbb{R} \longrightarrow \mathbb{R}$

- A. Create the moment generating function for X.
- B. Use the MGF for $X \sim DisUni(x, \theta = 2)$ to find σ^2

10.4 More MGFs

Definition 10.4.1. Let $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the probability density function (PDF) of the continuous random variable X. The **moment generating** function (MGF) of X (where it exists) is defined where $\exists \varepsilon > 0 \ \ni \ \forall \ t \in (-\varepsilon, \varepsilon)$

$$M_X(t) = E[e^{tX}] = \int_x (e^{tX} \cdot f_X(x)) dx$$

 $M_X : \mathbb{R} \longrightarrow \mathbb{R}$

Theorem 10.4.1. Let X be a continuous random variable where $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$. Let $\alpha, \beta \in \mathbb{R}$, $\exists \varepsilon > 0 \ \ni \ \forall \ t \in (-\varepsilon, \varepsilon) \ M_X(t)$ exists.

- 1. $M_{(X+\alpha)}(t) = e^{(t\alpha)} \cdot M_X(t)$
- 2. $M_{(\beta X)}(t) = M_X(\beta t)$
- 3. $M_{\left(\frac{X+\alpha}{\beta}\right)}(t) = e^{\left(\frac{\alpha t}{\beta}\right)} \cdot M_X(\beta t)$

Definition 10.4.2. Let $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the probability density function (PDF) of the continuous random variable X and let $M_X(t)$ where $M_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the moment generating function (MGF) of X. $E[X] = M'_X(t)$ at t = 0 (alternately $E[X] = \frac{d}{dt}(M_X(t))$ at t = 0 or $E[X] = M'_X(0)$).

Definition 10.4.3. Let $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the probability density function (PDF) of the continuous random variable X and let $M_X(t)$ where $M_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the moment generating function (MGF) of X. $E[X^2] = M_X''(t)$ at t = 0 (alternately $E[X^2] = \frac{d^2}{d^2t}(M_X(t))$ at t = 0 or $E[X] = M_X''(0)$).

Definition 10.4.4. Let $X \sim f_X(x)$ where $f_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the probability density function (PDF) of the continuous random variable X and let $M_X(t)$ where $M_X : \mathbb{R} \longrightarrow \mathbb{R}$ be the moment generating function (MGF) of X. $E[X^n] = M_X^{(n)}(t)$ at t = 0 (alternately $E[X^n] = \frac{d^n}{d^n t}(M_X(t))$ at t = 0 or $E[X] = M_X^{(n)}(0)$).

Theorem 10.4.2. Let X be a continuous random variable Then \exists a unique function, $f_X(x)$, which is its probability density function where such exists; \exists a unique function, $F_X(x)$, which is its cumulative distribution function where such exists; and, \exists a unique function, $M_X(t)$, which is its moment generating function where such exists.

We claim there are some Special MGFs associated with continuous random variables:

Let
$$X \sim Uni(x, \alpha, \beta)$$

$$M_X(t) = \frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$$
Let $X \sim Nor(x, \mu, \sigma)$
$$M_X(t) = e^{(\mu t + \frac{1}{2}\sigma^2 t^2)}$$
Let $X \sim \Gamma(x, \alpha, \beta)$
$$M_X(t) = (1 - \beta t)^{-\alpha} \quad \ni \quad t < \frac{1}{\beta}$$
Let $X \sim Exp(x, \theta)$
$$M_X(t) = (1 - \theta t)^{-1} \quad \ni \quad t < \frac{1}{\theta}$$
Let $X \sim Chi(x, \alpha, \nu)$
$$M_X(t) = (1 - 2t)^{-\nu/2} \quad \ni \quad t < 2$$

10.5 More Exercises: Moment Generating Functions

Exercise 10.5.1. Let $X \sim Exp(x, \theta)$.

A. Use the MGF for $X \sim Exp(x,\theta)$ to find μ

B. Use the MGF for $X \sim Exp(x, \theta)$ to find σ

C. Use the MGF for $X \sim Exp(x,\theta)$ to find η_3

Exercise 10.5.2. Let $X \sim Chi(x, \nu)$.

A. Use the MGF for $X \sim Chi(x, \nu)$ to find μ

B. Use the MGF for $X \sim Chi(x, \nu)$ to find σ

Exercise 10.5.3. Let $X \sim \Gamma(x, \alpha, \beta)$.

A. Use the MGF for $X \sim \Gamma(x, \alpha, \beta)$ to find μ

B. Use the MGF for $X \sim \Gamma(x, \alpha, \beta)$ to find σ

Last revised 27 Mar. 2017 © 1995 – 2017, M. P. M. M. McLoughlin.