§4 Handout - Worksheet 2016 - 4AThe Gamma function, Permutations, Combinations, and Generalised Principle of Counting, Part I Dr. M. P. M. M. M^cLoughlin Created 1995 Last Revised 2016

1. GAMMA

Definition 1.1. Let $x \in (0, \infty)$ Gamma of x is defined as the real number that is

$$\int_0^\infty t^{(x-1)} \cdot e^{-t} dt$$

Definition 1.2. The Gamma function is defined as

$$\Gamma: (0,\infty) \longrightarrow \mathbb{R}$$

such that

$$\Gamma(x) = \int_0^\infty t^{(x-1)} \cdot e^{-t} dt$$

Theorem 1.1. Let $\alpha > 1$. $\Gamma(\alpha) = (\alpha - 1) \cdot \Gamma(\alpha - 1)$.

2. Factoral

Definition 2.1. Let $n \in \mathbb{N}^*$ n factoral is defined as the integer that is

$$\int_0^\infty t^{(n)} \cdot e^{-t} dt$$

and the notation is n!

Definition 2.2. Let $n \in \mathbb{N}^*$. **n factoral** is defined as the natural number that is $\prod_{k=1}^{n} k$ when $n \in \mathbb{N}$; is 1 when n = 0; and, the notation is n!

Definition 2.3. Let $n \in \mathbb{N}$. The factoral function, f, is $f : \mathbb{N} \longrightarrow \mathbb{R}$ such that f(n) = (n-1)! It is the restriction function (the sequence) $\Gamma \Big|_{\mathbb{N}}$ and the notation is (n-1)!

Theorem 2.1. Let $n \in \mathbb{N}$. $n! = n \cdot (n-1)!$.

Definition 3.1. Let $n \in \mathbb{N}^*$, $k \in \mathbb{N}^*$, and $n \ge k$. The **permutations** n things ordered k at a time is defined as the integer

$$\frac{n!}{(n-k)!}$$

and the notation is ${}_{n}P_{k} \equiv P(n,k)$

4. Combinations

Definition 4.1. Let $n \in \mathbb{N}^*$, $k \in \mathbb{N}^*$, and $n \ge k$. The **combinations** n things chosen k at a time is defined as the integer

$$\frac{n!}{k! \cdot (n-k)!}$$

and the notation is ${}_{n}C_{k} \equiv \binom{n}{k}$

Theorem 4.1. $n \in \mathbb{N}^*$, $k \in \mathbb{N}^*$, and $n \ge k$.

$$P(n,k) \ge \binom{n}{k}$$

Theorem 4.2. $n \in \mathbb{N}, k \in \mathbb{N}, and n > k$.

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Theorem 4.3. $n \in \mathbb{N}^*$, $k \in \mathbb{N}^*$, and $n \ge k$.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Theorem 4.4. $n \in \mathbb{N}, k \in \mathbb{N}, and n \ge k$.

$$\binom{n}{k} = \binom{n}{n-k}$$

Theorem 4.5. $n \in \mathbb{N}, k \in \mathbb{N}, and n \ge k$.

$$\binom{n}{0} = 1$$

Theorem 4.6. $n \in \mathbb{N}, k \in \mathbb{N}, and n \ge k$.

$$\binom{n}{n} = 1$$

Theorem 4.7. $n \in \mathbb{N}$.

$$\binom{n}{1} = n$$

Theorem 4.8. $n \in \mathbb{N}$.

$$\binom{n}{n-1} = n$$

None of these theorems are Board-worthy in MAT 301 (MAT 321 or MAT 123 maybe but not in here).

5. Computation Exercises

Compute (where such exists):

1. $\binom{7}{4}$	2. $\begin{pmatrix} 7\\5 \end{pmatrix}$	3. $\binom{8}{4}$	4. $\binom{8}{5}$
5. $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	$6. \ \begin{pmatrix} 4\\1 \end{pmatrix}$	7. $\begin{pmatrix} 4\\2 \end{pmatrix}$	8. $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$
9. $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$	10. $\binom{4}{5}$	11. $\begin{pmatrix} -4 \\ -2 \end{pmatrix}$	12. $\begin{pmatrix} 14\\ 13 \end{pmatrix}$

Last revised 2016-02-12 and initially created back around 1995 (c) by Dr. M. P. M. M. M. M. Dughlin. This is the worksheet that actually replaces worksheet 3AAA-.