HAND-OUT 2 ½ PROBABILITY M. P. M. M. McLoughlin

Recall from Set Theory that elements, a, are members of sets, A, and a set, A, is a subset of some well defined universe, U.

The universe is defined first then we can talk about sets.

Set Theory	Probability Theory
Universe, U example $U = \{1, 2, 3, 4, 5\}$	Sample space, S example $S = \{1, 2, 3, 4, 5\}$
Sets, A, B, and C. A = {1, 2} B = {2, 3, 4} C = {1, 4}	Events E, F, and G $E = \{1, 2\}$ $F = \{2, 3, 4\}$ $G = \{1, 4\}$
Elements $1 \in A$ $3 \notin A$ $2, 3 \in B$	Outcomes $1 \in E$ $1 \notin F$ $2 \in E \land 2 \in F$
$5 \in \mathbb{C}^{\mathbb{C}}$	$3 \in E \land 2 \in F$

So, for probability theory we rename the universe as a sample space [the space from whence a sample may be chosen], an arbitrary set is called an event, and an arbitrary element of a set is an outcome.

The Axioms of Probability

Let S denote the sample space, E, E_i , F, etc. events and the notation $Pr(\bullet)$ the probability of whatever.

Axiom 1	S is the space \Rightarrow Pr(S) = 1
Axiom 2	E is an event $\Rightarrow 0 \le \Pr(E) \le 1$
Axiom 3	Let I be an index set. The collection $\{E_i\}_{i\in I}$ being mutually exclusive
	$\Rightarrow \Pr(\bigcup_{i \in I} E_i) = \sum_{i \in I} \Pr(E_i)$
Corollary 1	E is an event \Rightarrow Pr(E') = 1 - Pr(E)

Corollary 2 E and F are events \ni E \subseteq F \Longrightarrow Pr(E) \le Pr(F)

Theorem 1 E and F are events. $Pr(E \cup F) = Pr(E) + Pr(F) - Pr(E \cap F)$