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MATH 140 

DR. MCLOUGHLIN’S CLASS 

STATISTICAL FORMULAE FOR CORRELATION 

HANDOUT V PART B 
 

Recall we are attempting to estimate parameters in a population (e.g.:  a population mean ,   

a population variance  
2 ,  a population standard deviation , or any other parameter let us call it ) so,  

Let D = {X1, X2, X3, . . . , Xn} be a finite data set from a population of interest.  

Let X1, X2, X3, . . . , Xn be the finite random sample.   

 

Recall these statistical formulae from previous handouts: 
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Definition 1: If X and Y are random variables, and the function given by f(x, y) for each x and y 

in the domain of the function is the p. d. f. or p. m. f. at x and y.  Then 

the covariance of X and Y is  Cov[X, Y] = E[(X - x) (Y - y)] 

Note:  We write Cov[X, Y] = xy =  yx   and   since Cov[X, Y] = xy =  yx   it is generally the 

case in a bivariate discussion to denote Var[X] = xx  and Var[Y] = yy .  

 

Theorem 1: If X and Y are random variables, and the function given by f(x, y) for each x and y 

in the domain of the function is the p. d. f. or p. m. f. at x and y.  Then 

Cov[X, Y] = E[XY] - E[X]E[Y] = xy  – (X 
. 
Y) 
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Definition 2: If X and Y are random variables, and the function given by f(x, y) for each x and y 

in the domain of the function is the p. d. f. or p. m. f. at x and y.  Then 

the Pearson product-moment correlation coefficient (or just correlation) of X and Y is  [X, Y] = 

Cov X Y

x y

[ , ]

 
.  We also write Corr[X, Y] = xy 

Theorem 2: If X and Y are random variables, and the function given by f(x, y) for each x and y 

in the domain of the function is the p. d. f. or p. m. f. at x and y.  Then 

XY [0, )    

Theorem 3: If X and Y are random variables, and the function given by f(x, y) for each x and y 

in the domain of the function is the p. d. f. or p. m. f. at x and y.  Then 

XY [ 1,1]    

 

Now suppose we have paired data such that  

Let D1 = {X1, X2, X3, . . . , Xn} be a finite data set from a population of interest.  

Let D2 = {Y1, Y2, Y3, . . . , Yn} be a finite data set from a population of interest.  

(either  Xi, and Yi are two measures of an attribute of a subject or could be paired because of 

some justification in the research area of the researcher.  

The sample Pearson product-moment correlation is  
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XYr  is XY̂  

XYr [ 1,1]   

The sample Pearson product-moment correlation is a measure of the linear association between 

two variables.  It is not a measure of causation, it does not show X creates Y,  X causes Y, Y creates X,  

Y causes X, etc.      
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The heuristic for correlation is:  

‘low’ near zero, ‘moderate’ not near zero nor near – 1 nor 1,  ‘high’ near – 1 or 1.   

 

Two variables X and Y can have ‘low’ correlation (‘near zero’) and still be associated.   

 

Scatterplots assist us in noting correlations.  

 

 

1.  Find XYr  (if it exists) for the data sets; if it doesn’t state why it doesn’t: 

A.        B.  

    

 

 

C.         D.  
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E.          

 

 

 

 

 

 

 

 

 

 

 

 

 

T-test for Correlated Data Formula 

Let D1 = {X1, X2, X3, . . . , 
1nX  } be a finite data set from a population of interest.  

Let D2 = {Y1, Y2, Y3, . . . , 
2nY } be a finite data set from a population of interest.  

Recall the sample Pearson product-moment correlation is  
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If the samples are related (two measures from the same subject or matched pairs), a correlated data formula is used 

(and let n1 = n2):  
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