MATH 140 DR. McLoughlin's Class Some Sampling Distribution Results Handout V

Let n, p, α , β , σ , μ , γ , θ , λ , c be constants.

Theorem 1 (DeMoivre - Laplace): Let
$$X \sim Bin(x, n, p)$$
. Let $Y = \frac{X - np}{\sqrt{np(1-p)}}$.

As $n \longrightarrow \infty$, it is the case that $Y \longrightarrow Z$ where $Z \sim Nor(z, 0, 1)$.

Theorem 2: Let $X \sim \text{Nor}(x, \mu, \sigma)$. Let $Z = \frac{X - \mu}{\sigma}$ it is the case that $Z \sim \text{Nor}(z, 0, 1)$.

<u>Theorem 3</u>: Let $X \sim \text{Nor }(x, \mu_X, \sigma_X)$. Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables from $X \sim \text{Nor }(x, \mu_X, \sigma_X)$. Let $Y = \overline{X}$ it is the case that $E[Y] = E[\overline{X}] = \mu_X$. So, $\mu_{\overline{x}} = \mu_X$.

<u>Theorem 4</u>: Let $X \sim \text{Nor }(x, \mu_X, \sigma_X)$. Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables from $X \sim \text{Nor }(x, \mu_X, \sigma_X)$. Let $Y = \overline{X}$ it is the case that

Var[Y] =
$$\frac{\sigma_X^2}{n}$$
. So, $\sigma_{\bar{X}}^2 = \frac{\sigma_X^2}{n}$.

$$E[Y] = \sigma_X^2$$
. So, $E[s^2] = \sigma_X^2$.

<u>Theorem 6</u>: Let $X \sim \text{Nor } (x, \mu, \sigma)$. Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables from $X \sim \text{Nor } (x, \mu, \sigma)$ Let $Y = \overline{X}$

it is the case that $Y \sim Nor(y, \mu, \frac{\sigma}{\sqrt{n}})$.

Theorem 7: Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables from X ~ Nor (x, μ, σ) . Let $Y = \frac{(n-1)s^2}{\sigma^2}$ it is the case that $Y \sim \chi^2_{(n-1)}$.

Theorem 8 (Gossett): Let $Z \sim Nor(z, 0, 1)$, $U \sim \chi_m^2$, and Z and U be independent.

Let $W = \frac{Z}{\sqrt{U/m}}$ it is the case that $W \sim t_m$ (t with m degrees of freedom or t with df = m).

<u>Theorem 9</u>: Let $X \sim \text{Nor}(x, \mu_X, \sigma_X)$. Let X_1, X_2, \dots, X_n be independent, identically distributed random variables from $X \sim \text{Nor}(x, \mu_X, \sigma_X)$

it is the case that $\frac{\overline{X} - \mu_{\overline{X}}}{\sigma_{\overline{x}}} \, \thicksim \, Nor \, (z, \, 0, 1) \; .$

Theorem 10 (Gossett): Let $X \sim Nor(x, \mu, \sigma)$. Let X_1, X_2, \ldots, X_n be independent, identically distributed random variables from $X \sim Nor(x, \mu, \sigma)$

it is the case that $\frac{\overline{X} - \mu}{\sqrt[8]{n}} \sim t_{(n-1)}$.

Theorem 11 (Fisher – Snedecor): Let $U \sim \chi_n^2$ and $V \sim \chi_m^2$ and U and V be independent. Let Y =

 $\frac{U/n}{V/m} \ \ \text{it is the case that } Y \sim F_{n, \ m}.$

Theorem 12: Let U ~ χ^2_n and V ~ χ^2_m and U and V be independent. Let $Y = \frac{U/n}{V/m}$.

Let $W = \frac{1}{Y}$ it is the case that $W \sim F_{m, n}$.

Theorem 13: Let $X_{11}, X_{12}, \ldots, X_{1n_1}$ be independent, identically distributed random variables from $X_1 \sim \text{Nor}(x_1, \mu_1, \sigma_1)$. Let $X_{21}, X_{22}, \ldots, X_{2n_2}$ be independent, identically distributed random variables from $X_2 \sim \text{Nor}(x_2, \mu_2, \sigma_2)$.

Let $Y = \frac{s_1^2 \sigma_2^2}{s_2^2 \sigma_1^2}$ it is the case that $Y \sim F_{n_1 - 1, n_2 - 1}$.

<u>Theorem 14 (Central Limit Theorem / Law of Large Numbers)</u>:

Let $X \sim f_X(x)$. Let $E[X] = \mu_x$ and $Var[X] = \sigma_x^2$ be constant.

- (1) As $n \longrightarrow \infty$, it is the case that $X \longrightarrow Y_1$ where $Y_1 \sim \text{Nor}(y_1, n \cdot E[X], \sqrt{n} \cdot SD[X])$.
- (2) Let $Y_2 = \overline{X}$

As $n \longrightarrow \infty$, it is the case that $Y_2 \longrightarrow Y_3$ where $Y_3 \sim \text{Nor}(y_3, E[X], \frac{SD[X]}{\sqrt{n}})$.

<u>Definition 1</u>: Let $X \sim f_X(x)$. Let α , β , σ , μ , γ , λ , . . . , θ be (possible) parameters for $f_X(x)$. We say $\hat{\alpha}$ is an estimator of α , $\hat{\beta}$ is an estimator for β , . . . , $\hat{\theta}$ is an estimator for θ .

Last revised 29 May 2009 © 1998 – 2009, M. P. M. M. M.